Thermomechanical Behavior and Modeling Approaches

[1]  Christian Miehe,et al.  Superimposed finite elastic–viscoelastic–plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation , 2000 .

[2]  Kumbakonam R. Rajagopal,et al.  A thermodynamic framework for the modeling of crystallizable shape memory polymers , 2008 .

[3]  Martin L. Dunn,et al.  Photomechanics of light-activated polymers , 2009 .

[4]  Thao D. Nguyen,et al.  Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers , 2008 .

[5]  S. Reese,et al.  A theory of finite viscoelasticity and numerical aspects , 1998 .

[6]  Hisaaki Tobushi,et al.  Thermomechanical constitutive model of shape memory polymer , 2001 .

[7]  Yiping Liu,et al.  Internal stress storage in shape memory polymer nanocomposites , 2004 .

[8]  C. Bowman,et al.  Photoinduced Plasticity in Cross-Linked Polymers , 2005, Science.

[9]  M. Boyce,et al.  Stress–strain behavior of thermoplastic polyurethanes , 2005 .

[10]  J. C. Simo,et al.  On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects , 1987 .

[11]  J. Hutchinson,et al.  Physical aging of polymers , 1995 .

[12]  M. Boyce,et al.  A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials , 1993 .

[13]  Wei Min Huang,et al.  Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism , 2005 .

[14]  Yanju Liu,et al.  Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers , 2007 .

[15]  Hisaaki Tobushi,et al.  Thermomechanical Constitutive Modeling in Shape Memory Polymer of Polyurethane Series , 1997 .

[16]  I. J. Rao,et al.  Constitutive modeling of the mechanics associated with crystallizable shape memory polymers , 2006 .

[17]  Jinsong Leng,et al.  Comment on “Water-driven programable polyurethane shape memory polymer: Demonstration and mechanism” [Appl. Phys. Lett. 86, 114105 (2005)] , 2008 .

[18]  G. Tammann,et al.  Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten , 1926 .

[19]  Gregory B. McKenna,et al.  Glass Formation and Glassy Behavior , 1996 .

[20]  Ken Gall,et al.  Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape-memory polymer networks , 2008 .

[21]  Christopher N. Bowman,et al.  Actuation in Crosslinked Polymers via Photoinduced Stress Relaxation , 2006 .

[22]  Yiping Liu,et al.  Thermomechanics of shape memory polymer nanocomposites , 2004 .

[23]  Xin Lan,et al.  Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite , 2008 .

[24]  Martin M. Mikulas,et al.  Carbon Fiber Reinforced Shape Memory Polymer Composites , 2000 .

[25]  M. Lake,et al.  Shape memory polymer nanocomposites , 2002 .

[26]  Ward Small,et al.  Inductively Heated Shape Memory Polymer for the Magnetic Actuation of Medical Devices , 2005, IEEE Transactions on Biomedical Engineering.

[27]  Xin Lan,et al.  Review of electro-active shape-memory polymer composite , 2009 .

[28]  Yiping Liu,et al.  Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling , 2006 .

[29]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[30]  Dimitris C. Lagoudas,et al.  A constitutive theory for shape memory polymers. Part I: Large deformations , 2008 .

[31]  W. Kauzmann The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures. , 1948 .

[32]  Simona Socrate,et al.  Deformation of thermoplastic vulcanizates , 2001 .

[33]  Paul F. McMillan,et al.  Relaxation in glassforming liquids and amorphous solids , 2000 .

[34]  Stefanie Reese,et al.  A Presentation and Comparison of Two Large Deformation Viscoelasticity Models , 1997 .

[35]  Xin Lan,et al.  Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains , 2008 .

[36]  A. J. Kovacs,et al.  Transition vitreuse dans les polymères amorphes. Etude phénoménologique , 1964 .

[37]  A. Schmidt Electromagnetic Activation of Shape Memory Polymer Networks Containing Magnetic Nanoparticles , 2006 .

[38]  Sanjay Govindjee,et al.  A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins' effect , 1991 .

[39]  L. Anand,et al.  Finite deformation constitutive equations and a time integrated procedure for isotropic hyperelastic—viscoplastic solids , 1990 .

[40]  J. Hutchinson,et al.  Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory , 1979 .

[41]  Jinsong Leng,et al.  Shape‐Memory Polymer in Response to Solution , 2008 .

[42]  Thao D. Nguyen,et al.  A thermoviscoelastic model for amorphous shape memory polymers: Incorporating structural and stress relaxation , 2008 .

[43]  A. Q. Tool,et al.  RELATION BETWEEN INELASTIC DEFORMABILITY AND THERMAL EXPANSION OF GLASS IN ITS ANNEALING RANGE , 1946 .

[44]  A thermodynamically consistent, nonlinear viscoelastic approach for modeling thermosets during cure , 2007 .

[45]  Ingo Bellin,et al.  Dual-shape properties of triple-shape polymer networks with crystallizable network segments and grafted side chains , 2007 .

[46]  A. Lendlein,et al.  Polymers Move in Response to Light , 2006 .

[47]  Yiping Liu,et al.  Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers , 2006 .

[48]  Yiping Liu,et al.  Thermomechanical recovery couplings of shape memory polymers in flexure , 2003 .

[49]  G. J. Monkman,et al.  Advances in shape memory polymer actuation , 2000 .

[50]  Dimitris C. Lagoudas,et al.  A constitutive theory for shape memory polymers. Part II: A linearized model for small deformations , 2008 .

[51]  R. Langer,et al.  Light-induced shape-memory polymers , 2005, Nature.

[52]  M. Boyce,et al.  Large inelastic deformation of glassy polymers. part I: rate dependent constitutive model , 1988 .

[53]  Mary C. Boyce,et al.  Constitutive modeling of the large strain time-dependent behavior of elastomers , 1998 .

[54]  M. Boyce,et al.  Large inelastic deformation of glassy polymers. Part II: numerical simulation of hydrostatic extrusion , 1988 .

[55]  Xin Lan,et al.  Fiber reinforced shape-memory polymer composite and its application in a deployable hinge , 2009 .

[56]  Alexander Lion,et al.  Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models , 2000 .

[57]  M. Boyce,et al.  On the kinematics of finite strain plasticity , 1989 .