Efficient Generation of Schwann Cells from Human Embryonic Stem Cell-Derived Neurospheres

Schwann cells (SC), the glial cells of peripheral nerves, are involved in many diseases including Charcot Marie Tooth and neurofibromatosis, and play a pivotal role in peripheral nerve regeneration. Although it is possible to obtain human SC from nerve biopsies, they are difficult to maintain and expand in culture. Here we describe an efficient system for directing the differentiation of human embryonic stem cells (hESC) into cells with the morphological and molecular characteristics of SC. Neurospheres were generated from hESC using stromal cell induction and grown under conditions supportive of SC differentiation. After 8 weeks, hESC-derived SC expressed characteristic markers GFAP, S100, HNK1, P75, MBP and PMP-22, and were observed in close association with hESC-derived neurites. ~60% of the cells were double-immunostained for the SC markers GFAP/S100. RT-PCR analysis confirmed the expression of GFAP, S100, P75, PMP-22 and MBP and demonstrated expression of the SC markers P0, KROX20 and PLP in the cultures. Expression of CAD19 was observed in 2 and 4 week cultures and then was down-regulated, consistent with its expression in SC precursor, but not mature stages. Co-culture of hESC-derived SC with rat, chick or hESC-derived axons in compartmentalized microfluidic chambers resulted in tight association of the SC with axons. Apparent wrapping of the axons by SC was occasionally observed, suggestive of myelination. Our method for generating SC from hESC makes available a virtually unlimited source of human SC for studies of their role in nerve regeneration and modeling of disease.

[1]  J. Thomson,et al.  Embryonic stem cell lines derived from human blastocysts. , 1998, Science.

[2]  R. S. Goldstein,et al.  Generation of Peripheral Sensory and Sympathetic Neurons and Neural Crest Cells from Human Embryonic Stem Cells , 2005, Stem cells.

[3]  R. Bunge,et al.  Isolation and functional characterization of Schwann cells derived from adult peripheral nerve , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  K. Barald,et al.  A mouse embryonic stem cell model of Schwann cell differentiation for studies of the role of neurofibromatosis type 1 in Schwann cell development and tumor formation , 2007, Glia.

[5]  Nitish Thakor,et al.  Compartmentalized microfluidic culture platform to study mechanism of paclitaxel-induced axonal degeneration , 2009, Experimental Neurology.

[6]  A. Crang,et al.  The use of cultured autologous Schwann cells to remyelinate areas of persistent demyelination in the central nervous system , 1985, Journal of the Neurological Sciences.

[7]  R. Bunge,et al.  Differentiation of Axon-related Schwann Cells in Vitro. I. Ascorbic Acid Regulates Basal Lamina Assembly and Myelin Formation , 1989 .

[8]  N. Ratner,et al.  How does the Schwann cell lineage form tumors in NF1? , 2008, Glia.

[9]  R. Redett,et al.  Schwann Cells Express Motor and Sensory Phenotypes That Regulate Axon Regeneration , 2006, The Journal of Neuroscience.

[10]  J. Kocsis,et al.  Transplantation of Cryopreserved Adult Human Schwann Cells Enhances Axonal Conduction in Demyelinated Spinal Cord , 2001, The Journal of Neuroscience.

[11]  R. Milo,et al.  A central role for Necl4 (SynCAM4) in Schwann cell–axon interaction and myelination , 2007, Nature Neuroscience.

[12]  Yi-Chung Lee,et al.  [Charcot-Marie-Tooth disease]. , 2008, Acta neurologica Taiwanica.

[13]  T. Shea,et al.  Respective roles of neurofilaments, microtubules, MAP1B, and tau in neurite outgrowth and stabilization. , 1994, Molecular biology of the cell.

[14]  Georgia Panagiotakos,et al.  Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells , 2007, Nature Biotechnology.

[15]  Mikael Wiberg,et al.  Effect of Allogeneic Schwann Cell Transplantation on Peripheral Nerve Regeneration , 2002, Experimental Neurology.

[16]  M. Bronner‐Fraser,et al.  Molecular mechanisms of neural crest formation. , 1999, Annual review of cell and developmental biology.

[17]  D. Newgreen,et al.  Small‐Molecule Induction of Neural Crest‐like Cells Derived from Human Neural Progenitors , 2009, Stem cells.

[18]  C. Cotman,et al.  A microfluidic culture platform for CNS axonal injury, regeneration and transport , 2005, Nature Methods.

[19]  A. Korngreen,et al.  PA6-induced human embryonic stem cell-derived neurospheres: a new source of human peripheral sensory neurons and neural crest cells , 2008, Brain Research.

[20]  R. S. Goldstein,et al.  Peripheral sensory neurons differentiate from neural precursors derived from human embryonic stem cells. , 2008, Differentiation; research in biological diversity.

[21]  R. Mirsky,et al.  The origin and development of glial cells in peripheral nerves , 2005, Nature Reviews Neuroscience.

[22]  Arum Han,et al.  Microfluidic compartmentalized co-culture platform for CNS axon myelination research , 2009, Biomedical microdevices.

[23]  R. Campenot,et al.  Local control of neurite development by nerve growth factor. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Jeff Biernaskie,et al.  Skin-Derived Precursors Generate Myelinating Schwann Cells for the Injured and Dysmyelinated Nervous System , 2006, The Journal of Neuroscience.

[25]  S. Strickland,et al.  AXON REGENERATION Activation of Neuronal Intrinsic Growth Capacity in Peripheral Axon Regeneration , 2007 .

[26]  U. Suter,et al.  The Early Life of a Schwann Cell , 2002, Biological chemistry.

[27]  S. McMahon,et al.  Schwann cell precursors transplanted into the injured spinal cord multiply, integrate and are permissive for axon growth , 2008, Glia.

[28]  P. Wood,et al.  Labeled Schwann cell transplantation: Cell loss, host Schwann cell replacement, and strategies to enhance survival , 2006, Glia.

[29]  A. Trounson,et al.  Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro , 2000, Nature Biotechnology.

[30]  C. Lutzko,et al.  Isolation and characterization of neural crest stem cells derived from in vitro-differentiated human embryonic stem cells. , 2009, Stem cells and development.

[31]  H. M. Geller,et al.  Axon behaviour at Schwann cell – astrocyte boundaries: manipulation of axon signalling pathways and the neural adhesion molecule L1 can enable axons to cross , 2004, The European journal of neuroscience.

[32]  G. Raivich,et al.  The making of successful axonal regeneration: Genes, molecules and signal transduction pathways , 2007, Brain Research Reviews.

[33]  P. Wood Separation of functional Schwann cells and neurons from normal peripheral nerve tissue , 1976, Brain Research.

[34]  Robert Passier,et al.  Genome‐Wide Transcriptional Profiling of Human Embryonic Stem Cells Differentiating to Cardiomyocytes , 2006, Stem cells.

[35]  M. Oudega,et al.  Schwann Cell But Not Olfactory Ensheathing Glia Transplants Improve Hindlimb Locomotor Performance in the Moderately Contused Adult Rat Thoracic Spinal Cord , 2002, The Journal of Neuroscience.

[36]  Masahiko Takano,et al.  Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone‐marrow stromal cells , 2001, The European journal of neuroscience.

[37]  M. Filbin,et al.  cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury , 2004, Nature Medicine.

[38]  Z. Karabekian,et al.  Stem Cell Rev and Rep , 2010 .

[39]  Inbar Friedrich Ben-Nun,et al.  Human embryonic stem cells as a cellular model for human disorders , 2006, Molecular and Cellular Endocrinology.