Group-Valued Regularization for Motion Segmentation of Articulated Shapes

Motion-based segmentation is an important tool for the analysis of articulated shapes. As such, it plays an important role in mechanical engineering, computer graphics, and computer vision. In this chapter, we study motion-based segmentation of 3D articulated shapes. We formulate motion-based surface segmentation as a piecewise-smooth regularization problem for the transformations between several poses. Using Lie-group representation for the transformation at each surface point, we obtain a simple regularized fitting problem. An Ambrosio-Tortorelli scheme of a generalized Mumford-Shah model gives us the segmentation functional without assuming prior knowledge on the number of parts or even the articulated nature of the object. Experiments on several standard datasets compare the results of the proposed method to state-of-the-art algorithms.

[1]  Calin Belta,et al.  An SVD-based projection method for interpolation on SE(3) , 2002, IEEE Trans. Robotics Autom..

[2]  Doug L. James,et al.  Skinning mesh animations , 2005, ACM Trans. Graph..

[3]  Alfred M. Bruckstein,et al.  Variational Approach for Joint Optic-Flow Computation and Video Restoration , 2005 .

[4]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[5]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[6]  Alon Wolf,et al.  Group-Valued Regularization Framework for Motion Segmentation of Dynamic Non-rigid Shapes , 2011, SSVM.

[7]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[8]  Nir A. Sochen,et al.  Regularizing Flows over Lie Groups , 2009, Journal of Mathematical Imaging and Vision.

[9]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[10]  Martin Rumpf,et al.  An image processing approach to surface matching , 2005, SGP '05.

[11]  Aaron Hertzmann,et al.  Learning 3D mesh segmentation and labeling , 2010, SIGGRAPH 2010.

[12]  Hao Zhang,et al.  Robust 3D Shape Correspondence in the Spectral Domain , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[13]  B. Hall Lie Groups, Lie Algebras, and Representations , 2003 .

[14]  Fatih Murat Porikli,et al.  Learning on lie groups for invariant detection and tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Vijay Kumar,et al.  On the generation of smooth three-dimensional rigid body motions , 1998, IEEE Trans. Robotics Autom..

[16]  Ron Kimmel,et al.  Hierarchical Matching of Non-rigid Shapes , 2011, SSVM.

[17]  Dongmei Zhang,et al.  Harmonic maps and their applications in surface matching , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[18]  Franck Hétroy,et al.  A Framework for motion-based mesh sequence segmentation , 2010 .

[19]  Jadran Lenarčič,et al.  Advances in Robot Kinematics: Motion in Man and Machine , 2010 .

[20]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[21]  Daniel Cremers,et al.  An Unbiased Second-Order Prior for High-Accuracy Motion Estimation , 2008, DAGM-Symposium.

[22]  N. N. Yanenko,et al.  The Method of Fractional Steps , 1971 .

[23]  Ben Taskar,et al.  Cascaded Models for Articulated Pose Estimation , 2010, ECCV.

[24]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[25]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[26]  Peter Meer,et al.  Nonlinear Mean Shift over Riemannian Manifolds , 2009, International Journal of Computer Vision.

[27]  Ariel Shamir,et al.  A survey on Mesh Segmentation Techniques , 2008, Comput. Graph. Forum.

[28]  Christoph Bregler,et al.  Non-Rigid Modeling of Body Segments for Improved Skeletal Motion Estimation , 2003 .

[29]  Andreas Müller,et al.  Differential-Geometric Modelling and Dynamic Simulation of Multibody Systems , 2009 .

[30]  Sebastian Thrun,et al.  Recovering Articulated Object Models from 3D Range Data , 2004, UAI.

[31]  Kiyoharu Aizawa,et al.  Motion Segmentation for Time-Varying Mesh Sequences Based on Spherical Registration , 2009, EURASIP J. Adv. Signal Process..

[32]  Alon Wolf,et al.  Using Cosserat Point Theory for Estimating Kinematics and Soft-Tissue Deformation During Gait Analysis , 2010 .

[33]  Mauro R. Ruggeri,et al.  Spectral-Driven Isometry-Invariant Matching of 3D Shapes , 2010, International Journal of Computer Vision.

[34]  Mikhail Belkin,et al.  Constructing Laplace operator from point clouds in Rd , 2009, SODA.

[35]  Alfred M. Bruckstein,et al.  Over-Parameterized Variational Optical Flow , 2007, International Journal of Computer Vision.

[36]  Knut-Andreas Lie,et al.  Scale Space and Variational Methods in Computer Vision, Second International Conference, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings , 2009, SSVM.

[37]  Elena Celledoni,et al.  The Exact Computation of the Free Rigid Body Motion and Its Use in Splitting Methods , 2008, SIAM J. Sci. Comput..

[38]  Tong-Yee Lee,et al.  Segmenting a deforming mesh into near-rigid components , 2006, The Visual Computer.

[39]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Mohamed Daoudi,et al.  Fast and precise kinematic skeleton extraction of 3D dynamic meshes , 2008, 2008 19th International Conference on Pattern Recognition.

[41]  E. Celledoni,et al.  Lie group methods for rigid body dynamics and time integration on manifolds , 2003 .

[42]  Bernhard Burgeth,et al.  Scale Spaces on Lie Groups , 2007, SSVM.

[43]  Michael G. Strintzis,et al.  Object Articulation Based on Local 3D Motion Estimation , 1999, ECMAST.

[44]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[45]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[46]  B. Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .

[47]  Sen Wang,et al.  Conformal Geometry and Its Applications on 3D Shape Matching, Recognition, and Stitching , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Thomas A. Funkhouser,et al.  A benchmark for 3D mesh segmentation , 2009, ACM Trans. Graph..

[49]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[50]  J. Weickert,et al.  Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods , 2005 .

[51]  Marco Attene,et al.  Mesh Segmentation - A Comparative Study , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[52]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[53]  Calin Belta On the Computation of Rigid Body Motion , 2009 .

[54]  Roger W. Brockett,et al.  Robotic manipulators and the product of exponentials formula , 1984 .

[55]  D. Hochbaum,et al.  A best possible approximation algorithm for the k--center problem , 1985 .

[56]  Helmut Maurer,et al.  Detection of Intensity and Motion Edges within Optical Flow via Multidimensional Control , 2009, SIAM J. Imaging Sci..

[57]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[59]  Michael Damsgaard,et al.  Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. , 2010, Journal of biomechanics.

[60]  Frank Chongwoo Park,et al.  A Lie Group Formulation of Robot Dynamics , 1995, Int. J. Robotics Res..

[61]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[62]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[63]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..

[64]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[65]  Alan Brunton,et al.  Segmenting animated objects into near-rigid components , 2010, The Visual Computer.

[66]  Daniel Cremers,et al.  Motion Competition: A variational framework for piecewise parametric motion segmentation , 2005 .

[67]  J. Eells,et al.  Harmonic Mappings of Riemannian Manifolds , 1964 .

[68]  Robert B. Fisher,et al.  Segmentation of range data into rigid subsets using surface patches , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[69]  David B. Shmoys,et al.  A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..

[70]  Nahum Kiryati,et al.  Piecewise-Smooth Dense Optical Flow via Level Sets , 2006, International Journal of Computer Vision.

[71]  Nicholas Ayache,et al.  Understanding the "Demon's Algorithm": 3D Non-rigid Registration by Gradient Descent , 1999, MICCAI.

[72]  Daniel Cremers,et al.  Motion Competition: A Variational Approach to Piecewise Parametric Motion Segmentation , 2005, International Journal of Computer Vision.

[73]  Søren Hauberg,et al.  Gaussian-Like Spatial Priors for Articulated Tracking , 2010, ECCV.

[74]  Vijay Kumar,et al.  Metrics and Connections for Rigid-Body Kinematics , 1999, Int. J. Robotics Res..

[75]  Keenan Crane,et al.  Lie group integrators for animation and control of vehicles , 2009, TOGS.

[76]  I. Holopainen Riemannian Geometry , 1927, Nature.