Modeling the opinion dynamics of superstars in the film industry

[1]  S. Damas,et al.  Zio: an artificial intelligence digital twin to build virtual markets , 2023, 2023 IEEE Conference on Artificial Intelligence (CAI).

[2]  F. Liébana-Cabanillas,et al.  Intermittent Continued Adoption of Digital Payment Services During the COVID-19 Induced Pandemic , 2022, Int. J. Hum. Comput. Interact..

[3]  O. Cordón,et al.  Analyzing the extremization of opinions in a general framework of bounded confidence and repulsion , 2022, Inf. Sci..

[4]  J. McKenzie The economics of movies (revisited): A survey of recent literature , 2022, Journal of Economic Surveys.

[5]  Meng Liu,et al.  Multi-attribute group decision-making considering opinion dynamics , 2021, Expert Syst. Appl..

[6]  Witold Pedrycz,et al.  Consensus reaching with trust evolution in social network group decision making , 2021, Expert Syst. Appl..

[7]  Gang Kou,et al.  Influence identification of opinion leaders in social networks: an agent-based simulation on competing advertisements , 2021, Inf. Fusion.

[8]  Ana Suárez Vázquez,et al.  Others' fortune in online vs offline settings: how envy affects people's intention to share information , 2021 .

[9]  Raoul V. Kübler,et al.  Content valuation strategies for digital subscription platforms , 2020, Journal of Cultural Economics.

[10]  Luca Becchetti,et al.  Biased Opinion Dynamics: When the Devil is in the Details , 2020, IJCAI.

[11]  Yu-Lin He,et al.  A new approach to solve opinion dynamics on complex networks , 2020, Expert Syst. Appl..

[12]  Natasha Zhang Foutz,et al.  Leveraging analytics to produce compelling and profitable film content , 2020, Journal of Cultural Economics.

[13]  Piyush Sharma,et al.  Celebrity influences on consumer decision making: new insights and research directions , 2019, Journal of Marketing Management.

[14]  Kay H. Hofmann,et al.  Talent and publicity as determinants of superstar incomes: empirical evidence from the motion picture industry , 2018, Applied Economics.

[15]  Gang Kou,et al.  A survey on the fusion process in opinion dynamics , 2018, Inf. Fusion.

[16]  Arturo Molina,et al.  A segmentation study of cinema consumers based on values and lifestyle , 2018 .

[17]  Hamed Taherdoost Determining Sample Size; How to Calculate Survey Sample Size , 2017 .

[18]  T. Hennig-Thurau,et al.  Empirical generalizations on the impact of stars on the economic success of movies , 2017 .

[19]  Taiji Harashima Ranking Value and Preference: A Model of Superstardom , 2016 .

[20]  William Rand,et al.  Building Agent-Based Decision Support Systems for Word-of-Mouth Programs: A Freemium Application , 2016 .

[21]  Hossein Noorazar,et al.  An Energy-Based Interaction Model for Population Opinion Dynamics with Topic Coupling , 2016, International Journal of Modern Physics C.

[22]  D. Zillmann . MOOD MANAGEMENT: USING ENTERTAINMENT TO FULL ADVANTAGE , 2015 .

[23]  Brian Moon,et al.  Pre-production forecasting of movie revenues with a dynamic artificial neural network , 2015, Expert Syst. Appl..

[24]  A. Suárez-Vázquez Superstars as Emotion-Eliciting Objects. An Examination of the Effect of the Emotion Mix of Movie Stars , 2015 .

[25]  I. Borg,et al.  Correcting Big Five Personality Measurements for Acquiescence: An 18–Country Cross–Cultural Study , 2013 .

[26]  R. Nelson,et al.  Movie stars and box office revenues: an empirical analysis , 2012 .

[27]  Haoxiang Xia,et al.  Opinion Dynamics: A Multidisciplinary Review and Perspective on Future Research , 2011, Int. J. Knowl. Syst. Sci..

[28]  Ekaterina V. Karniouchina Are Virtual Markets Efficient Predictors of New Product Success? The Case of the Hollywood Stock Exchange* , 2011 .

[29]  Ana Suárez-Vázquez,et al.  Critic power or star power? The influence of hallmarks of quality of motion pictures: an experimental approach , 2011 .

[30]  Thijs Broekhuizen,et al.  Simulating the Cinema Market: How Cross-Cultural Differences in Social Influence Explain Box Office Distributions , 2011 .

[31]  C. W. Park,et al.  Dilution and Enhancement of Celebrity Brands through Sequential Movie Releases , 2010 .

[32]  Alistair Moffat,et al.  A similarity measure for indefinite rankings , 2010, TOIS.

[33]  Tammo H. A. Bijmolt,et al.  Will It Spread or Not? The Effects of Social Influences and Network Topology on Innovation Diffusion , 2010 .

[34]  Klaus R Scherer,et al.  Emotions are emergent processes: they require a dynamic computational architecture , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[35]  Allègre L. Hadida,et al.  Motion Picture Performance: A Review and Research Agenda , 2009 .

[36]  D. Foley,et al.  The economy needs agent-based modelling , 2009, Nature.

[37]  F. Radicchi,et al.  Benchmark graphs for testing community detection algorithms. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[39]  Anita Elberse,et al.  The Power of Stars: Do Star Actors Drive the Success of Movies? , 2007 .

[40]  T. Hennig-Thurau,et al.  Determinants of motion picture box office and profitability: an interrelationship approach , 2007 .

[41]  Liyuan Wei,et al.  Invited Commentary---Making Sense of These Million-Dollar Babies---Rationale Behind Superstar Profit Participation Contracts , 2006 .

[42]  J. Eliashberg,et al.  The Motion Picture Industry: Critical Issues in Practice, Current Research, and New Research Directions , 2006 .

[43]  G. Tellis,et al.  Research on Innovation: A Review and Agenda for Marketing Science , 2006 .

[44]  Gianfranco Walsh,et al.  The differing roles of success drivers across sequential channels: An application to the motion picture industry , 2006 .

[45]  Yong Liu Word of Mouth for Movies: Its Dynamics and Impact on Box Office Revenue , 2006 .

[46]  Timoteo Carletti,et al.  How to make an efficient propaganda , 2006 .

[47]  Byeng-Hee Chang,et al.  Devising a Practical Model for Predicting Theatrical Movie Success: Focusing on the Experience Good Property , 2005 .

[48]  J. Steenkamp,et al.  Emotions in consumer behavior: A hierarchical approach , 2005 .

[49]  Xavier Drèze,et al.  Modeling Movie Life Cycles and Market Share , 2005 .

[50]  Morris B. Holbrook,et al.  The Role of Ordinary Evaluations in the Market for Popular Culture: Do Consumers Have “Good Taste”? , 2005 .

[51]  Arthur De Vany,et al.  Motion picture profit, the stable Paretian hypothesis, and the curse of the superstar , 2004 .

[52]  Rainer Hegselmann,et al.  Opinion dynamics and bounded confidence: models, analysis and simulation , 2002, J. Artif. Soc. Soc. Simul..

[53]  R. Peterson On the Use of College Students in Social Science Research: Insights from a Second‐Order Meta‐analysis , 2001 .

[54]  J. Eliashberg,et al.  MOVIEMOD: An Implementable Decision-Support System for Prerelease Market Evaluation of Motion Pictures , 2000 .

[55]  W. Walls,et al.  Uncertainty in the Movie Industry: Does Star Power Reduce the Terror of the Box Office? , 1999 .

[56]  M. Frasquet,et al.  Segmentation of Cinema Audiences: An Exploratory Study Applied to Young Consumers , 1999 .

[57]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[58]  M. Holbrook Popular Appeal versus Expert Judgments of Motion Pictures , 1999 .

[59]  L. Borghans,et al.  Superstardom and Monopolistic Power: Why Media Stars Earn More than their Marginal Contribution to Welfare , 1998 .

[60]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[61]  S. Ravid Information, Blockbusters and Stars? A Study of the Film Industry , 1997 .

[62]  J. Eliashberg,et al.  A Parsimonious Model for Forecasting Gross Box-Office Revenues of Motion Pictures , 1996 .

[63]  J. Eliashberg,et al.  Modeling goes to Hollywood: predicting individual differences in movie enjoyment , 1994 .

[64]  Barry King,et al.  The star and the commodity: Notes towards a performance theory of stardom , 1987 .

[65]  D. Isenberg Group polarization: A critical review and meta-analysis. , 1986 .

[66]  R. Berger A Necessary and Sufficient Condition for Reaching a Consensus Using DeGroot's Method , 1981 .

[67]  M. Degroot Reaching a Consensus , 1974 .

[68]  Yongli Li,et al.  An active opinion dynamics model: the gap between the voting result and group opinion , 2021, Inf. Fusion.

[69]  Neil Terry,et al.  The determinants of foreign box office revenue for English language movies , 2009 .

[70]  Guillaume Deffuant,et al.  Mixing beliefs among interacting agents , 2000, Adv. Complex Syst..

[71]  Noah E. Friedkin,et al.  Social influence and opinions , 1990 .

[72]  Moshe Adler,et al.  Stardom and Talent , 1985 .

[73]  S. Rosen The Economics of Superstars , 1981 .