MCDA and Multiobjective Evolutionary Algorithms

Evolutionary multiobjective optimization promises to efficiently generate a representative set of Pareto optimal solutions in a single optimization run. This allows the decision maker to select the most preferred solution from the generated set, rather than having to specify preferences a priori. In recent years, there has been a growing interest in combining the ideas of evolutionary multiobjective optimization and MCDA. MCDA can be used before optimization, to specify partial user preferences, after optimization, to help select the most preferred solution from the set generated by the evolutionary algorithm, or be tightly integrated with the evolutionary algorithm to guide the optimization towards the most preferred solution. This chapter surveys the state of the art of using preference information within evolutionary multiobjective optimization.

[1]  A. Jaszkiewicz,et al.  Interactive multiobjective optimization with the Pareto memetic algorithm , 2007 .

[2]  Kalyanmoy Deb,et al.  Multi-objective evolutionary algorithms: introducing bias among Pareto-optimal solutions , 2003 .

[3]  Andrzej Jaszkiewicz,et al.  Interactive analysis of multiple-criteria project scheduling problems , 1998, Eur. J. Oper. Res..

[4]  Hartmut Schmeck,et al.  Preference Ranking Schemes in Multi-Objective Evolutionary Algorithms , 2011, EMO.

[5]  Kalyanmoy Deb,et al.  I-MODE: An Interactive Multi-objective Optimization and Decision-Making Using Evolutionary Methods , 2007, EMO.

[6]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[7]  Khaled Ghédira,et al.  The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making , 2010, IEEE Transactions on Evolutionary Computation.

[8]  Alice M. Agogino,et al.  Optimized Design of MEMS by Evolutionary Multi-objective Optimization with Interactive Evolutionary Computation , 2004, GECCO.

[9]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[10]  Andrew P. Sage,et al.  A model of multiattribute decisionmaking and trade-off weight determination under uncertainty , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  Frank Neumann,et al.  Weighted preferences in evolutionary multi-objective optimization , 2013, Int. J. Mach. Learn. Cybern..

[12]  Jürgen Branke,et al.  Interactive Evolutionary Multiobjective Optimization Using Robust Ordinal Regression , 2009, EMO.

[13]  Pekka Korhonen,et al.  A Visual Interactive Method for Solving the Multiple-Criteria Problem , 1986 .

[14]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[15]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[16]  E. F. Khor,et al.  Evolutionary algorithms with goal and priority information for multi-objective optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[17]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[18]  Bernhard Sendhoff,et al.  Incorporation Of Fuzzy Preferences Into Evolutionary Multiobjective Optimization , 2002, GECCO.

[19]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[20]  Murat Köksalan,et al.  A Territory Defining Multiobjective Evolutionary Algorithms and Preference Incorporation , 2010, IEEE Transactions on Evolutionary Computation.

[21]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[22]  Lily Rachmawati,et al.  Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[23]  Hideyuki Takagi,et al.  Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation , 2001, Proc. IEEE.

[24]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[25]  A. Wierzbicki On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .

[26]  Indraneel Das On characterizing the “knee” of the Pareto curve based on Normal-Boundary Intersection , 1999 .

[27]  S. Zionts,et al.  Solving the Discrete Multiple Criteria Problem using Convex Cones , 1984 .

[28]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[29]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization using an outranking-based dominance generalization , 2010, Comput. Oper. Res..

[30]  Tobias Friedrich,et al.  An Efficient Algorithm for Computing Hypervolume Contributions , 2010, Evolutionary Computation.

[31]  Kalyanmoy Deb,et al.  Light beam search based multi-objective optimization using evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[32]  Anne Auger,et al.  Articulating user preferences in many-objective problems by sampling the weighted hypervolume , 2009, GECCO.

[33]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[34]  Jyrki Wallenius,et al.  Interactive evolutionary multi-objective optimization for quasi-concave preference functions , 2010, Eur. J. Oper. Res..

[35]  Andrzej Jaszkiewicz,et al.  The Light Beam Search Over a Non-dominated Surface of a Multiple-objective Programming Problem , 1994 .

[36]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO '06.

[37]  Andrzej P. Wierzbick Basic properties of scalarizmg functionals for multiobjective optimization , 1977 .

[38]  Helio J. C. Barbosa,et al.  An interactive genetic algorithm with co-evolution of weights for multiobjective problems , 2001 .

[39]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[40]  Jürgen Branke,et al.  Consideration of Partial User Preferences in Evolutionary Multiobjective Optimization , 2008, Multiobjective Optimization.

[41]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[42]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[43]  Kalyanmoy Deb,et al.  Interactive evolutionary multi-objective optimization and decision-making using reference direction method , 2007, GECCO '07.

[44]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[45]  Andrzej Jaszkiewicz,et al.  The 'Light Beam Search' approach - an overview of methodology and applications , 1999, Eur. J. Oper. Res..

[46]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[47]  Carlos A. Coello Coello,et al.  Preference incorporation to solve many-objective airfoil design problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[48]  K. Deb Solving goal programming problems using multi-objective genetic algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[49]  Murat Köksalan,et al.  An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization , 2003, Manag. Sci..

[50]  Eduardo Fernández,et al.  Increasing selective pressure towards the best compromise in evolutionary multiobjective optimization: The extended NOSGA method , 2011, Inf. Sci..

[51]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[52]  Roberto Battiti,et al.  Brain-Computer Evolutionary Multiobjective Optimization: A Genetic Algorithm Adapting to the Decision Maker , 2010, IEEE Trans. Evol. Comput..

[53]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[54]  Heike Trautmann,et al.  Integration of Preferences in Hypervolume-Based Multiobjective Evolutionary Algorithms by Means of Desirability Functions , 2010, IEEE Transactions on Evolutionary Computation.

[55]  José Rui Figueira,et al.  Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method , 2009, Eur. J. Oper. Res..

[56]  Qingfu Zhang,et al.  Interactive MOEA/D for multi-objective decision making , 2011, GECCO '11.

[57]  Pratyush Sen,et al.  Directed Multiple Objective search of design spaces using Genetic Algorithms and neural networks , 1999 .

[58]  E. J. Hughes,et al.  Constraint handling with uncertain and noisy multi-objective evolution , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[59]  Kaisa Miettinen,et al.  A Preference Based Interactive Evolutionary Algorithm for Multi-objective Optimization: PIE , 2011, EMO.

[60]  H. Trautmann,et al.  A method for including a-priori-preferences in Multicriteria Optimization , 2005 .

[61]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[62]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[63]  Murat Köksalan,et al.  An Interactive Territory Defining Evolutionary Algorithm: iTDEA , 2010, IEEE Transactions on Evolutionary Computation.

[64]  Andrzej Jaszkiewicz,et al.  A Comparative Study of Multiple-Objective Metaheuristics on the Bi-Objective Set Covering Problem and the Pareto Memetic Algorithm , 2004, Ann. Oper. Res..

[65]  Andrea Passerini,et al.  Adapting to a Realistic Decision Maker: Experiments towards a Reactive Multi-objective Optimizer , 2010, LION.

[66]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[67]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.

[68]  Garrison W. Greenwood,et al.  Fitness Functions for Multiple Objective Optimization Problems: Combining Preferences with Pareto Rankings , 1996, FOGA.

[69]  Hugues Bersini,et al.  Parametrical mechanical design with constraints and preferences: application to a purge valve , 2003 .

[70]  J. Branke,et al.  Interactive evolutionary multiobjective optimization driven by robust ordinal regression , 2010 .

[71]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.