Solving Nonlinear Systems of Equations Via Spectral Residual Methods: Stepsize Selection and Applications

Spectral residual methods are derivative-free and low-cost per iteration procedures for solving nonlinear systems of equations. They are generally coupled with a nonmonotone linesearch strategy and compare well with Newton-based methods for large nonlinear systems and sequences of nonlinear systems. The residual vector is used as the search direction and choosing the steplength has a crucial impact on the performance. In this work we address both theoretically and experimentally the steplength selection and provide results on a real application such as a rolling contact problem.

[1]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[2]  Dong-Hui Li,et al.  Descent Directions of Quasi-Newton Methods for Symmetric Nonlinear Equations , 2002, SIAM J. Numer. Anal..

[3]  Weijun Zhou,et al.  Spectral gradient projection method for solving nonlinear monotone equations , 2006 .

[4]  Valeria Ruggiero,et al.  On the steplength selection in gradient methods for unconstrained optimization , 2018, Appl. Math. Comput..

[5]  G. Toraldo,et al.  On spectral properties of steepest descent methods , 2013 .

[6]  Luigi Grippo,et al.  Nonmonotone derivative-free methods for nonlinear equations , 2007, Comput. Optim. Appl..

[7]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[8]  J. J. Kalker,et al.  Rolling contact phenomena , 2000 .

[9]  Benedetta Morini,et al.  A new modular procedure for industrial plant simulations and its reliable implementation , 2016 .

[10]  Benedetta Morini,et al.  TRESNEI, a Matlab trust-region solver for systems of nonlinear equalities and inequalities , 2010, Computational Optimization and Applications.

[11]  Roger Fletcher,et al.  On the Barzilai-Borwein Method , 2005 .

[12]  Ravi Varadhan,et al.  BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High-Dimensional Nonlinear Objective Function , 2009 .

[13]  Qingna Li,et al.  A class of derivative-free methods for large-scale nonlinear monotone equations , 2011 .

[14]  Marcos Raydan,et al.  Nonmonotone Spectral Methods for Large-Scale Nonlinear Systems , 2003, Optim. Methods Softw..

[15]  Marcos Raydan,et al.  The Barzilai and Borwein Gradient Method for the Large Scale Unconstrained Minimization Problem , 1997, SIAM J. Optim..

[16]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[17]  José Mario Martínez,et al.  Spectral Projected Gradient Methods: Review and Perspectives , 2014 .

[18]  Gene H. Golub,et al.  Matrix computations , 1983 .

[19]  William La Cruz A projected derivative-free algorithm for nonlinear equations with convex constraints , 2014 .

[20]  William La Cruz A projected derivative-free algorithm for nonlinear equations with convex constraints , 2014, Optim. Methods Softw..

[21]  Poom Kumam,et al.  A New Hybrid Spectral Gradient Projection Method for Monotone System of Nonlinear Equations with Convex Constraints , 2018 .

[22]  Roger Fletcher,et al.  Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming , 2005, Numerische Mathematik.

[23]  M. Gonçalves,et al.  An inexact Newton-like conditional gradient method for constrained nonlinear systems , 2017, Applied Numerical Mathematics.

[24]  Benedetta Morini,et al.  Quasi-Newton methods for constrained nonlinear systems: complexity analysis and applications , 2018, Comput. Optim. Appl..

[25]  A. Papini,et al.  On the global convergence of a new spectral residual algorithm for nonlinear systems of equations , 2020, Bollettino dell'Unione Matematica Italiana.

[26]  L. Zanni,et al.  A scaled gradient projection method for constrained image deblurring , 2008 .

[27]  M. L. N. Gonçalves,et al.  On the global convergence of an inexact quasi-Newton conditional gradient method for constrained nonlinear systems , 2018, Numerical Algorithms.

[28]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[29]  M. Powell,et al.  On the Estimation of Sparse Jacobian Matrices , 1974 .

[30]  Shengjie Li,et al.  Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations , 2016 .

[31]  Bin Zhou,et al.  Gradient Methods with Adaptive Step-Sizes , 2006, Comput. Optim. Appl..

[32]  Hassan Mohammad,et al.  A Positive Spectral Gradient-Like Method For Large-Scale Nonlinear Monotone Equations , 2017 .

[33]  Yunhai Xiao,et al.  Spectral gradient projection method for monotone nonlinear equations with convex constraints , 2009 .

[34]  K. Johnson,et al.  Three-Dimensional Elastic Bodies in Rolling Contact , 1990 .

[35]  Marcos Raydan,et al.  Molecular conformations from distance matrices , 1993, J. Comput. Chem..

[36]  M. Fukushima,et al.  A derivative-free line search and global convergence of Broyden-like method for nonlinear equations , 2000 .

[37]  W. Hager,et al.  The cyclic Barzilai-–Borwein method for unconstrained optimization , 2006 .

[38]  M. MarcosRaydan Convergence properties of the Barzilai and Borwein gradient method , 1991 .

[39]  M. Raydan On the Barzilai and Borwein choice of steplength for the gradient method , 1993 .

[40]  Valeria Ruggiero,et al.  Steplength selection in gradient projection methods for box-constrained quadratic programs , 2019, Appl. Math. Comput..

[41]  E. A. H. Vollebregt REFINEMENT OF KALKER'S ROLLING CONTACT MODEL , 2009 .

[42]  Benedetta Morini,et al.  Approximate norm descent methods for constrained nonlinear systems , 2018, Math. Comput..

[43]  L. Zanni,et al.  New adaptive stepsize selections in gradient methods , 2008 .

[44]  José Mario Martínez,et al.  Spectral residual method without gradient information for solving large-scale nonlinear systems of equations , 2006, Math. Comput..