On the powers of graphs with bounded asteroidal number
暂无分享,去创建一个
[1] Andreas Brandstädt,et al. Duchet-type theorems for powers of HHD-free graphs , 1997, Discret. Math..
[2] Stephan Olariu,et al. Asteroidal Triple-Free Graphs , 1997, SIAM J. Discret. Math..
[3] Rolf H. Möhring,et al. Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..
[4] Dieter Kratsch,et al. Asteroidal Sets in Graphs , 1997, WG.
[5] D. Corneil,et al. A recognition algorithm for II-graphs , 1990 .
[6] P. Duchet. Classical Perfect Graphs: An introduction with emphasis on triangulated and interval graphs , 1984 .
[7] Hans-Jürgen Bandelt,et al. Powers of distance-hereditary graphs , 1995, Discret. Math..
[8] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[9] Dieter Kratsch,et al. Independent Sets in Asteroidal Triple-Free Graphs , 1997, SIAM J. Discret. Math..
[10] Carsten Flotow. on Powers of M-trapezoid Graphs , 1995, Discret. Appl. Math..
[11] Feodor F. Dragan,et al. Dually Chordal Graphs , 1998, SIAM J. Discret. Math..
[12] Stephan Olariu,et al. Linear Time Algorithms for Dominating Pairs in Asteroidal Triple-free Graphs , 1995, SIAM J. Comput..
[13] Peter Damaschke. Distances in cocomparability graphs and their powers , 1992, Discret. Appl. Math..
[14] James R. Walter,et al. Representations of chordal graphs as subtrees of a tree , 1978, J. Graph Theory.
[15] Jeremy P. Spinrad,et al. On Treewidth and Minimum Fill-In of Asteroidal Triple-Free Graphs , 1997, Theor. Comput. Sci..
[16] V. Chvátal,et al. Topics on perfect graphs , 1984 .
[17] Stephan Olariu,et al. A Linear Time Algorithm to Compute a Dominating Path in an AT-Free Graph , 1995, Inf. Process. Lett..
[18] C. Lekkeikerker,et al. Representation of a finite graph by a set of intervals on the real line , 1962 .