An Algebraic Framework for Universal and Updatable SNARKs

We introduce Verifiable Subspace Sampling Arguments, a new information theoretic interactive proof system in which the prover shows that a vector has been sampled in a subspace according to the verifier’s coins. We show that this primitive provides a unifying view that explains the technical core of most of the constructions of universal and updatable pairing-based zkSNARKs.

[1]  Ian Miers,et al.  Scalable Multi-party Computation for zk-SNARK Parameters in the Random Beacon Model , 2017, IACR Cryptol. ePrint Arch..

[2]  Carla Ràfols,et al.  Updateable Inner Product Argument with Logarithmic Verifier and Applications , 2020, Public Key Cryptography.

[3]  Jens Groth,et al.  Short Pairing-Based Non-interactive Zero-Knowledge Arguments , 2010, ASIACRYPT.

[4]  Silvio Micali,et al.  Computationally Sound Proofs , 2000, SIAM J. Comput..

[5]  Matthew Green,et al.  A multi-party protocol for constructing the public parameters of the Pinocchio zk-SNARK , 2018, IACR Cryptol. ePrint Arch..

[6]  Elaine Shi,et al.  Signatures of Correct Computation , 2013, TCC.

[7]  Eli Ben-Sasson,et al.  Scalable Zero Knowledge with No Trusted Setup , 2019, CRYPTO.

[8]  Manuel Blum,et al.  Non-Interactive Zero-Knowledge and Its Applications (Extended Abstract) , 1988, STOC 1988.

[9]  Charanjit S. Jutla,et al.  Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces , 2013, Journal of Cryptology.

[10]  Markulf Kohlweiss,et al.  Sonic: Zero-Knowledge SNARKs from Linear-Size Universal and Updatable Structured Reference Strings , 2019, IACR Cryptol. ePrint Arch..

[11]  Craig Gentry,et al.  Quadratic Span Programs and Succinct NIZKs without PCPs , 2013, IACR Cryptol. ePrint Arch..

[12]  Abhi Shelat,et al.  Doubly-Efficient zkSNARKs Without Trusted Setup , 2018, 2018 IEEE Symposium on Security and Privacy (SP).

[13]  Ian Goldberg,et al.  Constant-Size Commitments to Polynomials and Their Applications , 2010, ASIACRYPT.

[14]  Eike Kiltz,et al.  The Algebraic Group Model and its Applications , 2018, IACR Cryptol. ePrint Arch..

[15]  Jens Groth,et al.  On the Size of Pairing-Based Non-interactive Arguments , 2016, EUROCRYPT.

[16]  Ben Fisch,et al.  Transparent SNARKs from DARK Compilers , 2020, IACR Cryptol. ePrint Arch..

[17]  Ariel Gabizon,et al.  Improved prover efficiency and SRS size in a Sonic-like system , 2019, IACR Cryptol. ePrint Arch..

[18]  Eli Ben-Sasson,et al.  Interactive Oracle Proofs , 2016, TCC.

[19]  Jens Groth,et al.  Efficient Zero-Knowledge Argument for Correctness of a Shuffle , 2012, EUROCRYPT.

[20]  Yuval Ishai,et al.  Ligero: Lightweight Sublinear Arguments Without a Trusted Setup , 2017, Designs, Codes and Cryptography.

[21]  Dario Fiore,et al.  LegoSNARK: Modular Design and Composition of Succinct Zero-Knowledge Proofs , 2019, IACR Cryptol. ePrint Arch..

[22]  Jens Groth,et al.  Linear Algebra with Sub-linear Zero-Knowledge Arguments , 2009, CRYPTO.

[23]  Ariel Gabizon,et al.  PLONK: Permutations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge , 2019, IACR Cryptol. ePrint Arch..

[24]  Eli Ben-Sasson,et al.  Scalable, transparent, and post-quantum secure computational integrity , 2018, IACR Cryptol. ePrint Arch..

[25]  Dawn Xiaodong Song,et al.  Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation , 2019, IACR Cryptol. ePrint Arch..

[26]  Joe Kilian,et al.  A note on efficient zero-knowledge proofs and arguments (extended abstract) , 1992, STOC '92.

[27]  Dan Boneh,et al.  Bulletproofs: Short Proofs for Confidential Transactions and More , 2018, 2018 IEEE Symposium on Security and Privacy (SP).

[28]  Charanjit S. Jutla,et al.  Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces , 2013, ASIACRYPT.

[29]  Sanjam Garg,et al.  On the Round Complexity of OT Extension , 2018, IACR Cryptol. ePrint Arch..

[30]  Paz Morillo,et al.  The Kernel Matrix Diffie-Hellman Assumption , 2016, ASIACRYPT.

[31]  Eli Ben-Sasson,et al.  Aurora: Transparent Succinct Arguments for R1CS , 2019, IACR Cryptol. ePrint Arch..

[32]  Srinath T. V. Setty,et al.  Spartan: Efficient and general-purpose zkSNARKs without trusted setup , 2020, IACR Cryptol. ePrint Arch..

[33]  Dario Fiore,et al.  Lunar: a Toolbox for More Efficient Universal and Updatable zkSNARKs and Commit-and-Prove Extensions , 2020, IACR Cryptol. ePrint Arch..

[34]  Alexander Vlasov,et al.  RedShift: Transparent SNARKs from List Polynomial Commitment IOPs , 2019, IACR Cryptol. ePrint Arch..

[35]  Mary Maller,et al.  Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS , 2020, IACR Cryptol. ePrint Arch..

[36]  Nicholas Spooner,et al.  Fractal: Post-Quantum and Transparent Recursive Proofs from Holography , 2020, IACR Cryptol. ePrint Arch..

[37]  Helger Lipmaa,et al.  A Subversion-Resistant SNARK , 2017, ASIACRYPT.

[38]  Alan Szepieniec Polynomial IOPs for Linear Algebra Relations , 2020, IACR Cryptol. ePrint Arch..

[39]  Markulf Kohlweiss,et al.  Updatable and Universal Common Reference Strings with Applications to zk-SNARKs , 2018, IACR Cryptol. ePrint Arch..

[40]  Jens Groth,et al.  Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting , 2016, EUROCRYPT.

[41]  R. Cramer,et al.  Linear Zero-Knowledgde. A Note on Efficient Zero-Knowledge Proofs and Arguments , 1996 .

[42]  Georg Fuchsbauer,et al.  Subversion-Zero-Knowledge SNARKs , 2018, Public Key Cryptography.