A Quantum Chemical Study of the Protonation of Phenylphosphine and its Halogenated Derivatives

The protonation and methylation of phenylphosphine (C6H5PH2) and its mono-halogenated derivatives have been studied using ab initio quantum chemical calculations. Density functional theory (B3LYP) calculations using the 6-311++G(d,p) basis set consistently confirm that protonation of phenylphosphines takes place at the phosphorus atom; the C4-protonated phenylphosphine lying about 66 kJ mol−1 above the P-protonated isomer. Similarly, methylation of phosphines consistently occurs at phosphorus. The proton and methyl cation affinities are estimated as follows: PA(phenylphosphine) = 863 ± 10 kJ mol−1 and MCA(phenylphosphine) = 515 ± 12 kJ mol−1. Mono-halogen substitution appears to reduce the proton affinites by up to 20 kJ mol−1. In this context, following P-protonation of either a meta- or a para-X–C6H4–PH2, an elimination of the halogen X-atom under collisional activation (CA) conditions is expected to lead to a distonic radical cation, a low-energy isomer being 50 kJ mol−1 above ionized phenylphosphine.

[1]  M. Nguyen,et al.  Protonation and methylation of thiophenol, thioanisole and their halogenated derivatives: mass spectrometric and computational study , 2003 .

[2]  A. Mebel,et al.  Azido-Nitrene Is Probably the N4 Molecule Observed in Mass Spectrometric Experiments , 2003 .

[3]  M. Yáñez,et al.  Structural and energetic aspects of the protonation of phenol, catechol, resorcinol, and hydroquinone. , 2002, Chemistry.

[4]  M. Nguyen,et al.  Experimental and theoretical study of dicyanocarbene C(CN)2 , 2002 .

[5]  F. Tureček,et al.  Distonic isomers of ionized benzaldehyde , 2002 .

[6]  M. Nguyen,et al.  Ionized aniline and its distonic radical cation isomers , 2002 .

[7]  M. Nguyen,et al.  Collisionally induced loss of NO2 radical from protonated nitroimidazoles and nitropyrazoles , 2002 .

[8]  E. Leclerc,et al.  Gas-phase ion/molecule reactions between dimethoxyphosphonium ions and aromatic hydrocarbons. , 2002, Rapid communications in mass spectrometry : RCM.

[9]  M. Nguyen,et al.  Ionized Phenol and Its Isomers in the Gas Phase , 2001 .

[10]  M. Nguyen,et al.  Collisional activation of protonated C-halogenopyrazoles , 2001 .

[11]  O. Tishchenko,et al.  Protonation of Gaseous Halogenated Phenols and Anisoles and Its Interpretation Using DFT-Based Local Reactivity Indices , 2001 .

[12]  F. Tureček,et al.  Ionized Benzonitrile and Its Distonic Isomers in the Gas Phase , 2001 .

[13]  M. Nguyen,et al.  Evidence for the production of propene ion in the gas phase. Reaction of ionized dichlorocarbene with acetone , 2001 .

[14]  M. Nguyen,et al.  High-energy collisional activation of the molecular ions of thiophene-2-one with different target gases. , 2001, Journal of mass spectrometry : JMS.

[15]  M. Nguyen,et al.  Characterization of ionized carbenes in the gas phase , 2000 .

[16]  M. Nguyen,et al.  Dehalogenation of protonated C-halogeno-1,2,4-triazoles: synthesis of new heterocyclic carbenic and ylid radical cations and contrasting behaviour of collision gases , 2000 .

[17]  M. Nguyen,et al.  Collisional activation of protonated halogeno-pyridines: different behaviour of target gases , 2000 .

[18]  M. Nguyen,et al.  Collisional Interaction of Ionized Pyridine N-Oxides with Various Targets in a New Hybrid Mass Spectrometer , 2000 .

[19]  M. Nguyen,et al.  Isomerization of Acetonitrile N-Methylide (CH3CNCH2) ¥+ and N-Methylketenimine (CH3NCCH2) ¥+ Radical Cations in the Gas Phase: Theoretical Study of the (C3,H5,N) ¥+ Potential Energy Surface , 1999 .

[20]  M. Nguyen,et al.  Potential energy surfaces related to thioxy-hydroxy-carbene (HSνCνOH) and its radical cation , 1999 .

[21]  M. Nguyen,et al.  [C2H4OS]>·>+> Radical cations derived from alkyl thioformates: tandem mass spectrometry and molecular orbital calculations , 1999 .

[22]  M. Nguyen,et al.  The gas phase sulfur‐containing distonic radical cation hc+(oh)sc·h2 , 1998 .

[23]  M. Nguyen,et al.  The gas-phase RnX–NO+ (X=O, N, S) cations: nitroso onium cations versus ion–molecule complexes , 1998 .

[24]  M. Nguyen,et al.  Formation and characterization of acetonitrile N-methylide [CH3CNCH2](center dot+) and N-methylketenimine [CH3NCCH2](center dot+) radical cations in the gas phase , 1998 .

[25]  M. Nguyen,et al.  Novel β-Distonic Radical Cations [CnH2n+2S]•+ (n = 2, 3) Formed upon Decarbonylation of Ionized S-Alkyl Thioformates: A Mass Spectrometric and ab Initio Study , 1997 .

[26]  A. W. Allaf,et al.  Thionitrosyl cyanide (NCNS) , 1997 .

[27]  R. Flammang,et al.  Ion–molecule reaction of pyridine with CS3 radical cations: experimental evidence for the production of pyridine N-thioxide distonic ions , 1997 .

[28]  M. Nguyen,et al.  Observation of thiohydroxy-hydroxy-carbene [HSCOH] when searching for thionformic acid [HC(S) OH] in the gas phase , 1997 .

[29]  M. Nguyen,et al.  On the Loss of SH• from the Molecular Ions of S‐Alkyl Thioformates: Experimental Evidence for the Generation of Hydroxycarbenium Ions , 1997 .

[30]  M. Nguyen,et al.  On the loss of water from the molecular ions of S-alkyl thioformates , 1997 .

[31]  M. Nguyen,et al.  A Theoretical Study of Thionitrosyl Azide (N3NS), Thiazyl Azide (N3SN) and Nitrosyl Azide (N3NO) , 1996 .

[32]  M. Nguyen,et al.  A Search for Thionitrosyl Chloride (Cl–NS) in the Gas Phase , 1996 .

[33]  H. Kenttämaa,et al.  Charged Phenyl Radicals , 1996 .

[34]  H. Kenttämaa,et al.  Fluorine Substitution Enhances the Reactivity of Substituted Phenyl Radicals toward Organic Hydrogen Atom Donors , 1996 .

[35]  M. Nguyen,et al.  THE GAS-PHASE NITROGEN DISULFIDE RADICAL (SNS) , 1995 .

[36]  D. Szieberth,et al.  The photoelectron spectrum and conformation of phenylphosphine and phenylarsine , 1995 .

[37]  R. Flammang,et al.  A new hybrid mass spectrometer for the investigation of ion/molecule reactions , 1995 .

[38]  M. Nguyen,et al.  The thionitroxyl free radical (H2NS) and its ionic counterparts (H2NS+ and H2NS): A theoretical and experimental study , 1994 .

[39]  S. Laurent,et al.  Iminoethenethiones, Rn=c=c=s - Characterization by Neutralization-Reionization Mass-Spectrometry and G2(Mp2) Theory , 1994 .

[40]  R. Flammang,et al.  Gas‐phase unimolecular chemistry of ethyl butyl ketone cations , 1993 .

[41]  D. Suter,et al.  Quantum Time Translation Machine , 1993 .

[42]  M. Nguyen,et al.  A mass spectrometric and ab initio molecular orbital characterization of thionitrosyl hydride (H-N=S) , 1993 .

[43]  S. Laurent,et al.  Characterization of iminopropadienone ions and neutrals in a tandem mass spectrometer , 1992 .

[44]  R. Bateman,et al.  Applications in gaseous ion and neutral chemistry using a six-sector mass spectrometer , 1992 .

[45]  M. Nguyen,et al.  The Distonic Hc+ (oh)och2 Radical Cation - a Stable Isomer of Ionized Methyl Formate , 1991 .

[46]  N. Larsen,et al.  Conformation, barrier to internal rotation, and structure of the PH2-group in phenylphosphine, studied by microwave spectroscopy , 1987 .

[47]  P. Kebarle,et al.  A comparison of methyl and phenyl substituent effects on the gas phase basicities of amines and phosphines , 1983 .

[48]  S. Nagakura,et al.  Photoelectron Spectra of Substituted Benzenes , 1974 .

[49]  T. Debies,et al.  PHOTOELECTRON SPECTRA OF SUBSTITUTED BENZENES PART 3, BONDING WITH GROUP V SUBSTITUENTS , 1974 .

[50]  T. Debies,et al.  Photoelectron spectra of substituted benzenes. III. Bonding with Group V substituents , 1974 .