Trans-corneal drug delivery strategies in the treatment of ocular diseases.

[1]  K. Yao,et al.  Polymer- and Lipid-Based Nanocarriers for Ocular Drug Delivery: Current Status and Future Perspectives. , 2023, Advanced drug delivery reviews.

[2]  R. Mehanna,et al.  Chitosan-coated bovine serum albumin nanoparticles for topical tetrandrine delivery in glaucoma: in vitro and in vivo assessment , 2022, Drug delivery.

[3]  C. McAlinden,et al.  Engineering Hibiscus‐Like Riboflavin/ZIF‐8 Microsphere Composites to Enhance Transepithelial Corneal Cross‐Linking , 2022, Advanced materials.

[4]  Tianfeng Chen,et al.  Thermosensitive Tri-Block Polymer Nanoparticle-Hydrogel Composites as Payloads of Natamycin for Antifungal Therapy Against Fusarium Solani , 2022, International journal of nanomedicine.

[5]  Xianqun Fan,et al.  Ocular Nanomedicine , 2022, Advanced science.

[6]  L. Gonçalves,et al.  Chitosan and Hyaluronic Acid Nanoparticles as Vehicles of Epoetin Beta for Subconjunctival Ocular Delivery , 2022, Marine drugs.

[7]  Mohammad Y. Alshahrani,et al.  Drug Delivery Challenges and Current Progress in Nanocarrier-Based Ocular Therapeutic System , 2022, Gels.

[8]  Pengfei Zou,et al.  Glycopeptide-nanotransforrs eyedrops with enhanced permeability and retention for preventing fundus neovascularization. , 2022, Biomaterials.

[9]  N. Klyachko,et al.  Nanotechnology for Topical Drug Delivery to the Anterior Segment of the Eye , 2021, International Journal of Molecular Sciences.

[10]  Abdelwahab Omri,et al.  Cellulosic Polymers for Enhancing Drug Bioavailability in Ocular Drug Delivery Systems , 2021, Pharmaceuticals.

[11]  M. Aqil,et al.  Chitosan coated nanoparticles for efficient delivery of bevacizumab in the posterior ocular tissues via subconjunctival administration. , 2021, Carbohydrate polymers.

[12]  M. D. Di Gioia,et al.  Gel-Based Materials for Ophthalmic Drug Delivery , 2021, Gels.

[13]  Y. Lei,et al.  Endogenous dual stimuli-activated NO generation in the conventional outflow pathway for precision glaucoma therapy. , 2021, Biomaterials.

[14]  Kazuki Tajima,et al.  Magnesium Hydroxide Nanoparticles Improve the Ocular Hypotensive Effect of Twice Daily Topical Timolol Maleate in Healthy Dogs , 2021, Veterinary Sciences.

[15]  R. Dana,et al.  Advanced nanodelivery platforms for topical ophthalmic drug delivery. , 2021, Drug discovery today.

[16]  O. Gang,et al.  Rationally Programming Nanomaterials with DNA for Biomedical Applications , 2021, Advanced science.

[17]  W. Loh,et al.  Latanoprost-Loaded Phytantriol Cubosomes for the Treatment of Glaucoma. , 2021, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[18]  K. Bartz-Schmidt,et al.  Improved Treatment Options for Glaucoma with Brimonidine-Loaded Lipid DNA Nanoparticles. , 2021, ACS applied materials & interfaces.

[19]  K. Nguyen,et al.  Nanoencapsulated hybrid compound SA-2 with long-lasting intraocular pressure–lowering activity in rodent eyes , 2021, Molecular vision.

[20]  R. Herrero-Vanrell,et al.  Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection , 2021, Expert opinion on drug delivery.

[21]  H. Jo,et al.  Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. , 2021, Advanced drug delivery reviews.

[22]  Ke-fei Zhang,et al.  Nanodelivery of triamcinolone acetonide with PLGA-chitosan nanoparticles for the treatment of ocular inflammation , 2021, Artificial cells, nanomedicine, and biotechnology.

[23]  J. Ji,et al.  Macromolecular Platform with Super-Cation Enhanced Trans-Cornea Infiltration for Noninvasive Nitric Oxide Delivery in Ocular Therapy. , 2020, ACS nano.

[24]  Ziping Zhang,et al.  Brinzolamide loaded core-shell nanoparticles for enhanced coronial penetration in the treatment of glaucoma , 2020, Journal of applied biomaterials & functional materials.

[25]  W. Stamer,et al.  Targeted Delivery of Cell Softening Micelles to Schlemm's Canal Endothelial Cells for Treatment of Glaucoma. , 2020, Small.

[26]  S. S. Imam,et al.  Optimization to development of chitosan decorated polycaprolactone nanoparticles for improved ocular delivery of dorzolamide: In vitro, ex vivo and toxicity assessments. , 2020, International journal of biological macromolecules.

[27]  K. Bartz-Schmidt,et al.  Self-assembled DNA nanoparticles loaded with Travoprost for Glaucoma-treatment. , 2020, Nanomedicine : nanotechnology, biology, and medicine.

[28]  S. Pflugfelder,et al.  Biological functions of tear film. , 2020, Experimental eye research.

[29]  A. Camins,et al.  Dexibuprofen Biodegradable Nanoparticles: One Step Closer towards a Better Ocular Interaction Study , 2020, Nanomaterials.

[30]  I. Bravo-Osuna,et al.  Gelatin Nanoparticles-HPMC Hybrid System for Effective Ocular Topical Administration of Antihypertensive Agents , 2020, Pharmaceutics.

[31]  D. D. Nguyen,et al.  Dually functional hollow ceria nanoparticle platform for intraocular drug delivery: A push beyond the limits of static and dynamic ocular barriers toward glaucoma therapy. , 2020, Biomaterials.

[32]  Yingwu Luo,et al.  Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. , 2020, Biomaterials.

[33]  Jennifer J. Kang-Mieler,et al.  Advances in ocular drug delivery systems , 2020, Eye.

[34]  K. Kesavan,et al.  Brinzolamide Loaded Chitosan-Pectin Mucoadhesive Nanocapsules for Management of Glaucoma: Formulation, Characterization and Pharmacodynamic Study. , 2019, International journal of biological macromolecules.

[35]  Guodong Zhu,et al.  Dual controlled release effect of montmorillonite loaded polymer nanoparticles for ophthalmic drug delivery , 2019, Applied Clay Science.

[36]  Zhihua Gan,et al.  Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy , 2019, Nature Nanotechnology.

[37]  M. Roberts,et al.  Topical and Transdermal Drug Delivery: From Simple Potions to Smart Technologies , 2019, Current drug delivery.

[38]  Vrinda Gote,et al.  Ocular Drug Delivery: Present Innovations and Future Challenges , 2019, The Journal of Pharmacology and Experimental Therapeutics.

[39]  D. Shah,et al.  Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: In vitro and in vivo evaluation. , 2019, Acta biomaterialia.

[40]  E. Bellotti,et al.  Tuning of thermoresponsive pNIPAAm hydrogels for the topical retention of controlled release ocular therapeutics. , 2019, Journal of materials chemistry. B.

[41]  N. Zhao,et al.  Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. , 2019, Chemical reviews.

[42]  É. Boisselier,et al.  Gold nanoparticles in ophthalmology , 2019, Medicinal research reviews.

[43]  Fahd M. Alsharif,et al.  Chitosan-Gelatin Hydrogel Crosslinked With Oxidized Sucrose for the Ocular Delivery of Timolol Maleate. , 2018, Journal of pharmaceutical sciences.

[44]  Xinghuai Sun,et al.  Local Delivery and Sustained‐Release of Nitric Oxide Donor Loaded in Mesoporous Silica Particles for Efficient Treatment of Primary Open‐Angle Glaucoma , 2018, Advanced healthcare materials.

[45]  G. Peyman,et al.  Intracameral dexamethasone injection in the treatment of cataract surgery induced inflammation: design, development, and place in therapy , 2018, Clinical ophthalmology.

[46]  Menna M. Abdellatif,et al.  Formulation and Characterization of Carvedilol Leciplex for Glaucoma Treatment: In-Vitro, Ex-Vivo and In-Vivo Study , 2018, Pharmaceutics.

[47]  Ameeduzzafar,et al.  Chitosan coated PLGA nanoparticles amplify the ocular hypotensive effect of forskolin: Statistical design, characterization and in vivo studies. , 2018, International journal of biological macromolecules.

[48]  H. Fahmy,et al.  Treatment merits of Latanoprost/Thymoquinone – Encapsulated liposome for glaucomatus rabbits , 2018, International journal of pharmaceutics.

[49]  G. Malaguarnera,et al.  Topical Curcumin Nanocarriers are Neuroprotective in Eye Disease , 2018, Scientific Reports.

[50]  Rania M. Hathout,et al.  Exploring gelatin nanoparticles as novel nanocarriers for Timolol Maleate: Augmented in‐vivo efficacy and safe histological profile , 2018, International journal of pharmaceutics.

[51]  Hu Yang,et al.  DenTimol as A Dendrimeric Timolol Analogue for Glaucoma Therapy: Synthesis and Preliminary Efficacy and Safety Assessment. , 2018, Molecular pharmaceutics.

[52]  G. Storm,et al.  Evaluation of subconjunctival liposomal steroids for the treatment of experimental uveitis , 2018, Scientific Reports.

[53]  K. Bartz-Schmidt,et al.  DNA nanoparticles for ophthalmic drug delivery. , 2018, Biomaterials.

[54]  M. Sridhar,et al.  Anatomy of cornea and ocular surface , 2018, Indian journal of ophthalmology.

[55]  N. Khashab,et al.  Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications , 2018, Advanced healthcare materials.

[56]  Y. Shimomura,et al.  Enhancement in Corneal Permeability of Dissolved Carteolol by Its Combination with Magnesium Hydroxide Nanoparticles , 2018, International journal of molecular sciences.

[57]  G. Fairn,et al.  Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities , 2018, Traffic.

[58]  Hu Yang,et al.  Mildly Cross-Linked Dendrimer Hydrogel Prepared via Aza-Michael Addition Reaction for Topical Brimonidine Delivery. , 2017, Journal of biomedical nanotechnology.

[59]  F. Ogata,et al.  Co‐instillation of nano‐solid magnesium hydroxide enhances corneal permeability of dissolved timolol , 2017, Experimental eye research.

[60]  Linfeng Wu,et al.  Nanoparticles for drug delivery to the anterior segment of the eye. , 2017, Advanced drug delivery reviews.

[61]  D. Sehlin,et al.  Cationization increases brain distribution of an amyloid-beta protofibril selective F(ab')2 fragment. , 2017, Biochemical and biophysical research communications.

[62]  B. Mehravi,et al.  Nanogel-based natural polymers as smart carriers for the controlled delivery of Timolol Maleate through the cornea for glaucoma. , 2017, International journal of biological macromolecules.

[63]  A. Alshamsan,et al.  Poly (d, l-lactide-co-glycolide) nanoparticles for sustained release of tacrolimus in rabbit eyes. , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[64]  P. Khaw,et al.  Principles of pharmacology in the eye , 2017, British journal of pharmacology.

[65]  K. Wu,et al.  Gelatin-functionalized mesoporous silica nanoparticles with sustained release properties for intracameral pharmacotherapy of glaucoma. , 2017, Journal of materials chemistry. B.

[66]  J. Schuman,et al.  Long Term Glaucoma Drug Delivery Using a Topically Retained Gel/Microsphere Eye Drop , 2017, Scientific Reports.

[67]  F. Hirayama,et al.  Hydrophobically Modified Polymer/α-Cyclodextrin Thermoresponsive Hydrogels for Use in Ocular Drug Delivery. , 2017, Molecular pharmaceutics.

[68]  P. K. Sahoo,et al.  Topical delivery of acetazolamide by encapsulating in mucoadhesive nanoparticles , 2017, Asian journal of pharmaceutical sciences.

[69]  C. Lafon,et al.  Ultrasound-mediated ocular delivery of therapeutic agents: a review , 2017, Expert opinion on drug delivery.

[70]  A. Mitra,et al.  Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies , 2017, Journal of controlled release : official journal of the Controlled Release Society.

[71]  Yongtao Zhu,et al.  Development of Timolol-Loaded Galactosylated Chitosan Nanoparticles and Evaluation of Their Potential for Ocular Drug Delivery , 2017, AAPS PharmSciTech.

[72]  M. Fedorchak,et al.  Endophthalmitis Prophylaxis Using a Single Drop of Thermoresponsive Controlled-Release Microspheres Loaded with Moxifloxacin in a Rabbit Model , 2016, Translational vision science & technology.

[73]  D. Zurakowski,et al.  Latanoprost-Eluting Contact Lenses in Glaucomatous Monkeys. , 2016, Ophthalmology.

[74]  A. H. Salama,et al.  A Novel Method for Preparing Surface-Modified Fluocinolone Acetonide Loaded PLGA Nanoparticles for Ocular Use: In Vitro and In Vivo Evaluations , 2016, AAPS PharmSciTech.

[75]  T. Desai,et al.  Biocompatibility and Pharmacokinetic Analysis of an Intracameral Polycaprolactone Drug Delivery Implant for Glaucoma , 2016, Investigative ophthalmology & visual science.

[76]  Bei Xu,et al.  Liposomes as a Novel Ocular Delivery System for Brinzolamide: In Vitro and In Vivo Studies , 2016, AAPS PharmSciTech.

[77]  R. Agarwal,et al.  Liposomes in topical ophthalmic drug delivery: an update , 2016, Drug delivery.

[78]  B. Ramaiah,et al.  Improved intraocular bioavailability of ganciclovir by mucoadhesive polymer based ocular microspheres: development and simulation process in Wistar rats , 2015, DARU Journal of Pharmaceutical Sciences.

[79]  M. de la Fuente,et al.  Nanotherapies for the treatment of ocular diseases. , 2015, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[80]  J. Lovrić,et al.  Evaluation of cationic nanosystems with melatonin using an eye-related bioavailability prediction model. , 2015, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[81]  Hyun Beom Song,et al.  Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery. , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[82]  O. Soliman,et al.  Natural Bioadhesive Biodegradable Nanoparticle-Based Topical Ophthalmic Formulations for Management of Glaucoma. , 2015, Translational vision science & technology.

[83]  C. Supuran,et al.  Poly(amidoamine) Dendrimers with Carbonic Anhydrase Inhibitory Activity and Antiglaucoma Action. , 2015, Journal of medicinal chemistry.

[84]  S. Salomone,et al.  Cationic solid lipid nanoparticles enhance ocular hypotensive effect of melatonin in rabbit. , 2015, International journal of pharmaceutics.

[85]  Rania M. Hathout,et al.  Gelatin-based particulate systems in ocular drug delivery , 2015, Pharmaceutical development and technology.

[86]  Ameeduzzafar,et al.  Chitosan nanoparticles amplify the ocular hypotensive effect of cateolol in rabbits. , 2014, International journal of biological macromolecules.

[87]  N. K. Jain,et al.  Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. , 2014, International journal of pharmaceutics.

[88]  G. Büyükköroğlu,et al.  Chitosan nanoparticles for ocular delivery of cyclosporine A , 2014, Journal of microencapsulation.

[89]  Marcus Ang,et al.  Sustained drug release in nanomedicine: a long-acting nanocarrier-based formulation for glaucoma. , 2014, ACS nano.

[90]  U. Shinde,et al.  Development of Dorzolamide Loaded 6-O-Carboxymethyl Chitosan Nanoparticles for Open Angle Glaucoma , 2013, Journal of drug delivery.

[91]  Kamel Alhanout,et al.  Recent advances in ocular drug delivery , 2013, Drug development and industrial pharmacy.

[92]  R. Kumar,et al.  Betaxolol hydrochloride loaded chitosan nanoparticles for ocular delivery and their anti-glaucoma efficacy. , 2013, Current drug delivery.

[93]  A. Jha,et al.  Development, in vitro and in vivo characterization of Eudragit RL 100 nanoparticles for improved ocular bioavailability of acetazolamide , 2013, Drug delivery.

[94]  Jianlin Shi,et al.  In Vivo Bio‐Safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles , 2013, Advanced materials.

[95]  J. Schuman,et al.  The Monthly Eye Drop: Development of a Long-term, Noninvasive Glaucoma Treatment System , 2013 .

[96]  Udita Agrawal,et al.  Hyperbranched dendritic nano-carriers for topical delivery of dithranol , 2013, Journal of drug targeting.

[97]  A. A. Hamed,et al.  Developing the potential ophthalmic applications of pilocarpine entrapped into polyvinylpyrrolidone-poly(acrylic acid) nanogel dispersions prepared by γ radiation. , 2013, Biomacromolecules.

[98]  A. Chauhan,et al.  Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[99]  D. K. Majumdar,et al.  Eudragit®: a technology evaluation , 2013, Expert opinion on drug delivery.

[100]  F. Dal-Pizzol,et al.  Effects of gold nanoparticles on endotoxin-induced uveitis in rats. , 2012, Investigative ophthalmology & visual science.

[101]  S. Kinoshita,et al.  Rebamipide (OPC-12759) in the treatment of dry eye: a randomized, double-masked, multicenter, placebo-controlled phase II study. , 2012, Ophthalmology.

[102]  Rakesh Kumar,et al.  Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: in vitro characterization and in vivo study in rabbit eye. , 2012, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[103]  Jung-Hwan Park,et al.  Microneedles for drug and vaccine delivery. , 2012, Advanced drug delivery reviews.

[104]  E. Fattal,et al.  Liposomes for intravitreal drug delivery: a state of the art. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[105]  F. Lallemand,et al.  Successfully Improving Ocular Drug Delivery Using the Cationic Nanoemulsion, Novasorb , 2012, Journal of drug delivery.

[106]  M. Ang,et al.  Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye , 2012, International journal of nanomedicine.

[107]  R. Gurny,et al.  Ocular biocompatibility of novel Cyclosporin A formulations based on methoxy poly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers. , 2011, International journal of pharmaceutics.

[108]  Hsing-Wen Sung,et al.  Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. , 2011, Biomaterials.

[109]  Stephan Reichl,et al.  In vitro cell culture models to study the corneal drug absorption , 2011, Expert opinion on drug metabolism & toxicology.

[110]  Hao Yan,et al.  DNA self-assembly for nanomedicine. , 2010, Advanced drug delivery reviews.

[111]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[112]  R. Faulkner,et al.  Ocular distribution, bactericidal activity and settling characteristics of TobraDex® ST ophthalmic suspension compared with TobraDex® ophthalmic suspension , 2008, Advances in therapy.

[113]  M. Prausnitz,et al.  Coated microneedles for drug delivery to the eye. , 2007, Investigative ophthalmology & visual science.

[114]  P. Oh,et al.  Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung , 2007, Nature Biotechnology.

[115]  Kati-Sisko Vellonen,et al.  Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. , 2006, Advanced drug delivery reviews.

[116]  Arto Urtti,et al.  Challenges and obstacles of ocular pharmacokinetics and drug delivery. , 2006, Advanced drug delivery reviews.

[117]  R. Gurny,et al.  Intraocular implants for extended drug delivery: therapeutic applications. , 2006, Advanced drug delivery reviews.

[118]  Jiyoung M Dang,et al.  Natural polymers for gene delivery and tissue engineering. , 2006, Advanced drug delivery reviews.

[119]  Esther Eljarrat-Binstock,et al.  Iontophoresis: a non-invasive ocular drug delivery. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[120]  P. A. Pearson,et al.  Ocular pharmacokinetics of fluocinolone acetonide after Retisert intravitreal implantation in rabbits over a 1-year period. , 2004, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[121]  M. Wauben,et al.  Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis , 2004, Annals of the rheumatic diseases.

[122]  M. Wauben,et al.  Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. , 2003, Arthritis and rheumatism.

[123]  P. van der Bijl,et al.  Enhancement of transmucosal permeation of cyclosporine by benzalkonium chloride. , 2002, Advances in experimental medicine and biology.

[124]  P. van der Bijl,et al.  Effects of Three Penetration Enhancers on Transcorneal Permeation of Cyclosporine , 2001, Cornea.

[125]  D. Monti,et al.  Cytotoxicity of potential ocular permeation enhancers evaluated on rabbit and human corneal epithelial cell lines. , 2001, Toxicology letters.

[126]  J. Lim,et al.  Visual and anatomic outcomes associated with posterior segment complications after ganciclovir implant procedures in patients with AIDS and cytomegalovirus retinitis. , 1999, American journal of ophthalmology.

[127]  Franco Dosio,et al.  PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. , 2012, Current drug metabolism.

[128]  Kirk M. Bateman,et al.  Efficacy and tolerability of besifloxacin ophthalmic suspension 0.6% administered twice daily for 3 days in the treatment of bacterial conjunctivitis: a multicenter, randomized, double-masked, vehicle-controlled, parallel-group study in adults and children. , 2011, Clinical therapeutics.