Triplet States and electronic relaxation in photoexcited graphene quantum dots.

Electronic relaxation in photoexcited graphenes is central to their photoreactivity and their optoelectrical applications such as photodetectors and solar cells. Herein we report on the first ensemble studies of electronic energy relaxation pathways in colloidal graphene quantum dots with uniform size. We show that the photoexcited graphene quantum dots have a significant probability of relaxing into triplet states and emit both phosphorescence and fluorescence at room temperature, with relative intensities depending on the excitation energy. Because of the long lifetime and reactivity of triplet electronic states, our results could have significant implications for applications of graphenes.