Perspective: Organic electronic materials and devices for neuromorphic engineering

Neuromorphic computing and engineering has been the focus of intense research efforts that have been intensified recently by the mutation of Information and Communication Technologies (ICT). In fact, new computing solutions and new hardware platforms are expected to emerge to answer to the new needs and challenges of our societies. In this revolution, lots of candidates technologies are explored and will require leveraging of the pro and cons. In this perspective paper belonging to the special issue on neuromorphic engineering of Journal of Applied Physics, we focus on the current achievements in the field of organic electronics and the potentialities and specificities of this research field. We highlight how unique material features available through organic materials can be used to engineer useful and promising bioinspired devices and circuits. We also discuss about the opportunities that organic electronic are offering for future research directions in the neuromorphic engineering field.

[1]  X. Crispin,et al.  Oxygen-induced doping on reduced PEDOT , 2017, Journal of materials chemistry. A.

[2]  Subhasish Mitra,et al.  Three-dimensional integration of nanotechnologies for computing and data storage on a single chip , 2017, Nature.

[3]  C. Bédard,et al.  Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. , 2003, Biophysical journal.

[4]  Damien Querlioz,et al.  Spintronic Nanodevices for Bioinspired Computing , 2016, Proceedings of the IEEE.

[5]  N. T. Son,et al.  Conjugated Polyelectrolyte Blends for Electrochromic and Electrochemical Transistor Devices , 2015 .

[6]  G. Malliaras,et al.  Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors , 2015, Advanced materials.

[7]  Fabien Alibart,et al.  Concentric-Electrode Organic Electrochemical Transistors: Case Study for Selective Hydrazine Sensing , 2017, Sensors.

[8]  Hyunsang Hwang,et al.  Organic core-sheath nanowire artificial synapses with femtojoule energy consumption , 2016, Science Advances.

[9]  Fabien Alibart,et al.  Neuromorphic Time‐Dependent Pattern Classification with Organic Electrochemical Transistor Arrays , 2018, Advanced Electronic Materials.

[10]  J. Bradley,et al.  Creating electrical contacts between metal particles using directed electrochemical growth , 1997, Nature.

[11]  Manfred Lindau,et al.  Direct Measurement of Ion Mobility in a Conducting Polymer , 2013, Advanced materials.

[12]  T. Sakamoto,et al.  Polymer Solid-Electrolyte Switch Embedded on CMOS for Nonvolatile Crossbar Switch , 2011, IEEE Transactions on Electron Devices.

[13]  Qing Wan,et al.  Artificial Synapses Based on in-Plane Gate Organic Electrochemical Transistors. , 2016, ACS applied materials & interfaces.

[14]  Martin Pfeiffer,et al.  Doping of organic semiconductors , 2013 .

[15]  Toyosaka Moriizumi,et al.  Spectrum‐controllable color sensors using organic dyes , 1981 .

[16]  Claude Bédard,et al.  Evidence for frequency-dependent extracellular impedance from the transfer function between extracellular and intracellular potentials , 2009, Journal of Computational Neuroscience.

[17]  O. R. Mattos,et al.  Application of the impedance model of de Levie for the characterization of porous electrodes , 2002 .

[18]  Z. Suo,et al.  Ionic cable , 2015 .

[19]  F. Zeng,et al.  Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system , 2013 .

[20]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[21]  Steve B. Furber,et al.  The SpiNNaker Project , 2014, Proceedings of the IEEE.

[22]  A. V. Emelyanov,et al.  Hardware elementary perceptron based on polyaniline memristive devices , 2015 .

[23]  Paolo Lugli,et al.  Interface Trap States in Organic Photodiodes , 2013, Scientific Reports.

[24]  A. Lorke,et al.  Self-assembled conjugated polymer spheres as fluorescent microresonators , 2014, Scientific Reports.

[25]  Michela Chiappalone,et al.  A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. , 2013, Nature materials.

[26]  Fabien Alibart,et al.  A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing , 2011, ArXiv.

[27]  C. Gamrat,et al.  An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse , 2009, 0907.2540.

[28]  J. Sprakel,et al.  Monodisperse conjugated polymer particles by Suzuki–Miyaura dispersion polymerization , 2012, Nature Communications.

[29]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[30]  C. Gamrat,et al.  Nanotube devices based crossbar architecture: toward neuromorphic computing , 2010, Nanotechnology.

[31]  George G. Malliaras,et al.  Neuromorphic device architectures with global connectivity through electrolyte gating , 2017, Nature Communications.

[32]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[33]  Damien Querlioz,et al.  Neuromorphic computing with nanoscale spintronic oscillators , 2017, Nature.

[34]  Dominique Vuillaume,et al.  Cation discrimination in organic electrochemical transistors by dual frequency sensing , 2018, Organic Electronics.

[35]  Xiaojun Li,et al.  Controlling Ion Conductance and Channels to Achieve Synaptic-like Frequency Selectivity , 2014, Nano-Micro Letters.

[36]  Bjorn Winther-Jensen,et al.  New one-pot poly(3,4-ethylenedioxythiophene): poly(tetrahydrofuran) memory material for facile fabrication of memory organic electrochemical transistors , 2015 .

[37]  Fabien Alibart,et al.  Functional Model of a Nanoparticle Organic Memory Transistor for Use as a Spiking Synapse , 2010, IEEE Transactions on Electron Devices.

[38]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[39]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[40]  R. Gabrielsson,et al.  Highly Stable Conjugated Polyelectrolytes for Water‐Based Hybrid Mode Electrochemical Transistors , 2017, Advanced materials.

[41]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[42]  Fabien Alibart,et al.  Low voltage and time constant organic synapse-transistor , 2015, ArXiv.

[43]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[44]  Yang Hui Liu,et al.  Freestanding Artificial Synapses Based on Laterally Proton‐Coupled Transistors on Chitosan Membranes , 2015, Advanced materials.

[45]  Jacques-Olivier Klein,et al.  Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses , 2016, Scientific Reports.

[46]  A. Kuehne,et al.  Monodisperse Conjugated Polymer Particles via Heck Coupling—A Kinetic Study to Unravel Particle Formation in Step-Growth Dispersion Polymerization , 2015 .

[47]  G. Schmid,et al.  Bismut-haltige p-Dotanden mit großer Bandlücke für optoelektronische Anwendungen , 2016 .

[48]  Aram Amassian,et al.  Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors , 2016, Journal of the American Chemical Society.

[49]  D. Vuillaume,et al.  Liquid‐Gated Organic Electronic Devices Based on High‐Performance Solution‐Processed Molecular Semiconductor , 2017 .

[50]  Cédric Plesse,et al.  Conducting interpenetrating polymer network sized to fabricate microactuators , 2011 .

[51]  Ajay K. Pandey,et al.  Organic Photodiodes: The Future of Full Color Detection and Image Sensing , 2016, Advanced materials.

[52]  Weisheng Zhao,et al.  Two‐Terminal Carbon Nanotube Programmable Devices for Adaptive Architectures , 2010, Advanced materials.

[53]  Johannes C. Brendel,et al.  A High Transconductance Accumulation Mode Electrochemical Transistor , 2014, Advanced materials.

[54]  Bernard A. Boukamp,et al.  Interpretation of the Gerischer impedance in solid state ionics , 2003 .

[55]  G. W. Burr,et al.  Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element , 2015, 2014 IEEE International Electron Devices Meeting.

[56]  George G. Malliaras,et al.  Controlling the mode of operation of organic transistors through side-chain engineering , 2016, Proceedings of the National Academy of Sciences.

[57]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[58]  Yuki Koizumi,et al.  Electropolymerization on wireless electrodes towards conducting polymer microfibre networks , 2016, Nature Communications.

[59]  M. Rozenberg,et al.  A Leaky‐Integrate‐and‐Fire Neuron Analog Realized with a Mott Insulator , 2017 .

[60]  Jiale Liang,et al.  Cross-Point Memory Array Without Cell Selectors—Device Characteristics and Data Storage Pattern Dependencies , 2010, IEEE Transactions on Electron Devices.

[61]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[62]  C. Yeon,et al.  Highly conductive PEDOT:PSS treated by sodium dodecyl sulfate for stretchable fabric heaters , 2017 .

[63]  T. Fuchigami,et al.  Size-controlled synthesis of conducting-polymer microspheres by pulsed sonoelectrochemical polymerization. , 2009, Angewandte Chemie.

[64]  Tatiana Berzina,et al.  Polymeric electrochemical element for adaptive networks: Pulse mode , 2008 .

[65]  M. Marinella,et al.  A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. , 2017, Nature materials.

[66]  Fabien Alibart,et al.  Pavlov's Dog Associative Learning Demonstrated on Synaptic-Like Organic Transistors , 2013, Neural Computation.

[67]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[68]  S. Inagi,et al.  Synthesis of linear PEDOT fibers by AC-bipolar electropolymerization in a micro-space , 2017 .

[69]  Tobi Delbruck,et al.  Real-time classification and sensor fusion with a spiking deep belief network , 2013, Front. Neurosci..

[70]  Dominique Vuillaume,et al.  Optoelectronic Switch and Memory Devices Based on Polymer‐Functionalized Carbon Nanotube Transistors , 2006 .

[71]  J. Yang,et al.  Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. , 2017, Nature materials.

[72]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[73]  Dmitri B. Strukov,et al.  Nanotechnology: Smart connections , 2011, Nature.

[74]  Tatiana Berzina,et al.  Optimization of an organic memristor as an adaptive memory element , 2009 .

[75]  Claude Bédard,et al.  Intracellular Impedance Measurements Reveal Non-ohmic Properties of the Extracellular Medium around Neurons. , 2015, Biophysical journal.

[76]  S. Inagi,et al.  In-Plane Growth of Poly(3,4-ethylenedioxythiophene) Films on a Substrate Surface by Bipolar Electropolymerization. , 2018, ACS macro letters.

[77]  C. Brabec,et al.  The fabrication of color-tunable organic light-emitting diode displays via solution processing , 2017, Light: Science & Applications.

[78]  Dominique Vuillaume,et al.  Nanotube transistors as direct probes of the trap dynamics at dielectric-organic interfaces of interest in organic electronics and solar cells. , 2008, Nano letters.

[79]  Dominique Vuillaume,et al.  Electrolyte-gated organic synapse transistor interfaced with neurons , 2016, 1608.01191.

[80]  Giacomo Indiveri,et al.  Memory and Information Processing in Neuromorphic Systems , 2015, Proceedings of the IEEE.

[81]  T. Berzina,et al.  Electrochemical control of the conductivity in an organic memristor: a time-resolved X-ray fluorescence study of ionic drift as a function of the applied voltage. , 2009, ACS applied materials & interfaces.

[82]  Suchol Savagatrup,et al.  Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics. , 2017, Chemical reviews.

[83]  Weisheng Zhao,et al.  Neuromorphic function learning with carbon nanotube based synapses , 2013, Nanotechnology.

[84]  George G. Malliaras,et al.  Synaptic plasticity functions in an organic electrochemical transistor , 2015 .

[85]  P. Leleux,et al.  In vivo recordings of brain activity using organic transistors , 2013, Nature Communications.

[86]  M. Halik,et al.  Wide Band-Gap Bismuth-based p-Dopants for Opto-Electronic Applications. , 2016, Angewandte Chemie.

[87]  George G. Malliaras,et al.  Orientation selectivity in a multi-gated organic electrochemical transistor , 2016, Scientific Reports.

[88]  T. Berzina,et al.  Hybrid electronic device based on polyaniline-polyethyleneoxide junction , 2005 .

[89]  Tatiana Berzina,et al.  Polymeric elements for adaptive networks , 2007 .

[90]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[91]  George G. Malliaras,et al.  Influence of Device Geometry on Sensor Characteristics of Planar Organic Electrochemical Transistors , 2010, Advanced materials.

[92]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[93]  Jong Won Chung,et al.  A highly stretchable, transparent, and conductive polymer , 2017, Science Advances.

[94]  L. Abbott,et al.  A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex , 1997, The Journal of Neuroscience.

[95]  D. J. Carrad,et al.  Electron-beam patterning of polymer electrolyte films to make multiple nanoscale gates for nanowire transistors. , 2014, Nano letters.

[96]  Christophe Bernard,et al.  High-performance transistors for bioelectronics through tuning of channel thickness , 2015, Science Advances.

[97]  A. Shen,et al.  Fabrication of conducting polyaniline microspheres using droplet microfluidics , 2013 .

[98]  Silvia Caponi,et al.  Bio-hybrid interfaces to study neuromorphic functionalities: New multidisciplinary evidences of cell viability on poly(anyline) (PANI), a semiconductor polymer with memristive properties. , 2016, Biophysical chemistry.