Investigation of substrate-specific porin channels in lipid bilayer membranes

[1]  R. Benz,et al.  Determination of ion permeability through the channels made of porins from the outer membrane ofSalmonella typhimurium in lipid bilayer membranes , 1980, The Journal of Membrane Biology.

[2]  S. Schein,et al.  Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria , 1976, The Journal of Membrane Biology.

[3]  R. Benz,et al.  Optical and electrical properties of thin monoolein lipid bilayers , 2005, The Journal of Membrane Biology.

[4]  Roland Benz,et al.  Mechanism of sugar transport through the sugar-specific LamB channel ofEscherichia coli outer membrane , 2005, The Journal of Membrane Biology.

[5]  V. Braun,et al.  Functions related to the receptor protein specified by the tsx gene of Escherichia coli , 1980, Archives of Microbiology.

[6]  R. Benz,et al.  Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin , 2004, Archives of Microbiology.

[7]  M. Winterhalter,et al.  Facilitated substrate transport through membrane proteins. , 2001, Physical review letters.

[8]  G. Winkelmann Microbial transport systems , 2001 .

[9]  R. Hancock,et al.  Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. , 2000, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[10]  M. Winterhalter,et al.  Oriented channels reveal asymmetric energy barriers for sugar translocation through maltoporin of Escherichia coli. , 2000, European journal of biochemistry.

[11]  M. Hofnung,et al.  In vivo and in vitro studies of major surface loop deletion mutants of the Escherichia coli K‐12 maltoporin: contribution to maltose and maltooligosaccharide transport and binding , 1999, Molecular Microbiology.

[12]  R. Benz,et al.  Study of Sugar Binding to the Sucrose-specific ScrY Channel of Enteric Bacteria Using Current Noise Analysis , 1998, The Journal of Membrane Biology.

[13]  Kay Diederichs,et al.  Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose , 1998, Nature Structural Biology.

[14]  G. Schulz,et al.  Structure of maltoporin from Salmonella typhimurium ligated with a nitrophenyl-maltotrioside. , 1997, Journal of molecular biology.

[15]  R. Benz,et al.  Rate constants of sugar transport through two LamB mutants of Escherichia coli: comparison with wild-type maltoporin and LamB of Salmonella typhimurium. , 1996, Journal of molecular biology.

[16]  R. Dutzler,et al.  Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. , 1996, Structure.

[17]  R. Benz,et al.  Evaluation of the rate constants of sugar transport through maltoporin (LamB) of Escherichia coli from the sugar-induced current noise , 1995, The Journal of general physiology.

[18]  J. Rosenbusch,et al.  Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution , 1995, Science.

[19]  R. Benz,et al.  Noise analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: evaluation of the sugar binding kinetics to the channel interior. , 1994, Biophysical journal.

[20]  R. Benz,et al.  Anion transport through the phosphate-specific OprP-channel of the Pseudomonas aeruginosa outer membrane: effects of phosphate, di- and tribasic anions and of negatively-charged lipids. , 1993, Biochimica et biophysica acta.

[21]  G. Rummel,et al.  Crystal structures explain functional properties of two E. coli porins , 1992, Nature.

[22]  H. Nikaido,et al.  Porins and specific channels of bacterial outer membranes , 1992, Molecular microbiology.

[23]  R. Benz,et al.  Overexpression in Escherichia coli and functional analysis of a novel PPi-selective porin, oprO, from Pseudomonas aeruginosa , 1992, Journal of bacteriology.

[24]  G. Schulz,et al.  Molecular architecture and electrostatic properties of a bacterial porin. , 1991, Science.

[25]  K. Schmid,et al.  The sugar‐specific outer membrane channel ScrY contains functional characteristics of general diffusion pores and substrate‐specific porins , 1991, Molecular microbiology.

[26]  J. Lengeler,et al.  A sugar‐specific porin, ScrY, is involved in sucrose uptake in enteric bacteria , 1991, Molecular microbiology.

[27]  H. Nikaido,et al.  Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. , 1990, The Journal of biological chemistry.

[28]  R. Siehnel,et al.  Sequence and relatedness in other bacteria of the Pseudomonas aeruginosa oprP gene coding for the phosphate‐specific porin P , 1990, Molecular microbiology.

[29]  R. Benz,et al.  LamB (maltoporin) of Salmonella typhimurium: isolation, purification and comparison of sugar binding with LamB of Escherichia coli , 1990, Molecular microbiology.

[30]  T. Ferenci,et al.  Channel architecture in maltoporin: dominance studies with lamB mutations influencing maltodextrin binding provide evidence for independent selectivity filters in each subunit , 1989, Journal of bacteriology.

[31]  R. Benz,et al.  Characterization of the nucleoside-binding site inside the Tsx channel of Escherichia coli outer membrane. Reconstitution experiments with lipid bilayer membranes. , 1988, European journal of biochemistry.

[32]  R. Benz,et al.  Permeation of hydrophilic molecules through the outer membrane of gram‐negativ bacteria , 1988 .

[33]  H. Nikaido,et al.  Specificity of the glucose channel formed by protein D1 of Pseudomonas aeruginosa. , 1988, Biochimica et biophysica acta.

[34]  R. Benz,et al.  Pore-forming activity of the Tsx protein from the outer membrane of Escherichia coli. Demonstration of a nucleoside-specific binding site. , 1988, The Journal of biological chemistry.

[35]  J. Lengeler,et al.  Plasmid‐mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400 , 1988, Molecular microbiology.

[36]  A. Middendorf,et al.  Double negative and positive control of tsx expression in Escherichia coli , 1988, Journal of bacteriology.

[37]  R. Benz Structure and function of porins from gram-negative bacteria. , 1988, Annual review of microbiology.

[38]  C. Ferran,et al.  Deletion analysis of sucrose metabolic genes from a Salmonella plasmid cloned in Escherichia coli K12. , 1987, Plasmid.

[39]  R. Benz,et al.  Mechanism of ion transport through the anion-selective channel of the Pseudomonas aeruginosa outer membrane , 1987, The Journal of general physiology.

[40]  T. Ferenci,et al.  Sequence determinants in the lamB gene of Escherichia coli influencing the binding and pore selectivity of maltoporin. , 1987, Gene.

[41]  R. Benz,et al.  Pore formation by LamB of Escherichia coli in lipid bilayer membranes , 1986, Journal of bacteriology.

[42]  C. Desaymard,et al.  Antigenic polymorphism of the LamB protein among members of the family Enterobacteriaceae , 1985, Journal of bacteriology.

[43]  J. Coulton,et al.  Transmembrane permeability channels across the outer membrane of Haemophilus influenzae type b , 1985, Journal of bacteriology.

[44]  R. Benz,et al.  Ion selectivity of gram-negative bacterial porins , 1985, Journal of bacteriology.

[45]  M. Page,et al.  When is the outer membrane of Escherichia coli rate-limiting for uptake of galactosides? , 1984, Journal of theoretical biology.

[46]  R. Benz,et al.  An anion-selective channel from the Pseudomonas aeruginosa outer membrane , 1983 .

[47]  M. Schwartz [10] Phage λ receptor (LamB protein) in Escherichia coli , 1983 .

[48]  H. Nikaido Proteins forming large channels from bacterial and mitochondrial outer membranes: porins and phage lambda receptor protein. , 1983, Methods in enzymology.

[49]  R. Benz,et al.  Outer membrane protein P of Pseudomonas aeruginosa: regulation by phosphate deficiency and formation of small anion-specific channels in lipid bilayer membranes , 1982, Journal of bacteriology.

[50]  H. Nikaido,et al.  Effect on solute size on diffusion rates through the transmembrane pores of the outer membrane of Escherichia coli , 1981, The Journal of general physiology.

[51]  R. Lehrer,et al.  Microbicidal cationic proteins in rabbit alveolar macrophages: a potential host defense mechanism , 1980, Infection and immunity.

[52]  Christopher Miller,et al.  A VOLTAGE‐DEPENDENT CHLORIDE CONDUCTANCE CHANNEL FROM TORPEDO ELECTROPLAX MEMBRANE * , 1980, Annals of the New York Academy of Sciences.

[53]  T. Ferenci,et al.  Lambda Receptor in the Outer Membrane of Escherichia coli as a Binding Protein for Maltodextrins and Starch Polysaccharides , 1980, Journal of bacteriology.

[54]  H. Nikaido,et al.  Diffusion of solutes through channels produced by phage lambda receptor protein of Escherichia coli: inhibition by higher oligosaccharides of maltose series. , 1980, Biochemical and biophysical research communications.

[55]  H. Nikaido,et al.  The Outer Membrane of Gram-negative Bacteria , 1980 .

[56]  R. Benz,et al.  Ionic selectivity of pores formed by the matrix protein (porin) of Escherichia coli. , 1979, Biochimica et biophysica acta.

[57]  E. T. Palva,et al.  Major outer membrane protein in Salmonella typhimurium induced by maltose , 1978, Journal of bacteriology.

[58]  R. Benz,et al.  Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. , 1978, Biochimica et biophysica acta.

[59]  R. Rest,et al.  Susceptibility of Lipopolysaccharide Mutants to the Bactericidal Action of Human Neutrophil Lysosomal Fractions , 1977, Infection and immunity.

[60]  K. Nakamura,et al.  Effects of heating in dodecyl sulfate solution on the conformation and electrophoretic mobility of isolated major outer membrane proteins from Escherichia coli K-12. , 1976, Journal of biochemistry.

[61]  T. Nakae Outer membrane of Salmonella. Isolation of protein complex that produces transmembrane channels. , 1976, The Journal of biological chemistry.

[62]  E Wanke,et al.  Channel noise in nerve membranes and lipid bilayers , 1975, Quarterly Reviews of Biophysics.

[63]  M. Hofnung,et al.  Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor , 1975, Journal of bacteriology.

[64]  R. Benz,et al.  Electrical capacity of black lipid films and of lipid bilayers made from monolayers. , 1975, Biochimica et biophysica acta.

[65]  W. R. Lieb,et al.  Testing and characterizing the simple pore. , 1974, Biochimica et biophysica acta.

[66]  S. Mizushima,et al.  Separation by density gradient centrifugation of two types of membranes from spheroplast membrane of Escherichia coli K12. , 1968, Biochimica et biophysica acta.

[67]  D. O. Rudin,et al.  Reconstitution of Cell Membrane Structure in vitro and its Transformation into an Excitable System , 1962, Nature.

[68]  E. M. Renkin,et al.  FILTRATION, DIFFUSION, AND MOLECULAR SIEVING THROUGH POROUS CELLULOSE MEMBRANES , 1954, The Journal of general physiology.