A low-temperature parylene-to-silicon dioxide bonding technique for high-pressure microfluidics

We introduce a new low-temperature (280 °C) parylene-to-SiO2 bonding process with high device yield (>90%) for the fabrication and integration of high-pressure-rated microfluidic chips. Pull tests demonstrate a parylene-to-SiO2 bonding strength of 10 ± 3 MPa. We apply this technique for bonding Pyrex and silicon wafers having multiple metal layers to fabricate standard packaged microfluidic devices. By performing electrochemical impedance spectroscopy of electrolyte solutions in such devices, we demonstrate that electrodes remain functional after the etching, bonding and dicing steps. We also develop a high-pressure microfluidic and electrical integration technology, eliminating special fluidic interconnections and wire-bonding steps. The burst pressure of the integrated system is statistically shown to be 7.6 ± 1.3 MPa, with a maximum achieved burst pressure of 11.1 MPa, opening perspectives for high-pressure applications of these types of microfluidic devices.

[1]  The fabrication of a microcolumn for gas separation using poly(dimethylsiloxane) as the structural and functional material , 2008 .

[2]  Holger Becker,et al.  Polymer microfabrication technologies for microfluidic systems , 2008, Analytical and bioanalytical chemistry.

[3]  Flow characteristics in a microchannel system integrated with arrays of micro-pressure sensors using a polymer material , 2008 .

[4]  M. Gijs,et al.  Micromachining of glass inertial sensors , 2002 .

[5]  P. Abgrall,et al.  Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review , 2007 .

[6]  Ciprian Iliescu,et al.  Glass-based microfluidic device fabricated by parylene wafer-to-wafer bonding for impedance spectroscopy , 2007 .

[7]  P. Renaud,et al.  Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique. , 2004, Lab on a chip.

[8]  Qing He,et al.  Residual stress in thin-film parylene-c , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[9]  M. Agah,et al.  Design, Modeling, and Fabrication of MEMS-Based Multicapillary Gas Chromatographic Columns , 2009, Journal of Microelectromechanical Systems.

[10]  T. Shepodd,et al.  Microchip HPLC of peptides and proteins. , 2005, Analytical chemistry.

[11]  Peter J. Hesketh,et al.  Parylene gas chromatographic column for rapid thermal cycling , 2002 .

[12]  M. Murphy,et al.  Fabrication and Preliminary Results for LiGA Fabricated Nickel Micro Gas Chromatograph Columns , 2007, Journal of Microelectromechanical Systems.

[13]  D. Hand,et al.  Localised laser joining of glass to silicon with BCB intermediate layer , 2009 .

[14]  Bruce K. Gale,et al.  Determining the optimal PDMS–PDMS bonding technique for microfluidic devices , 2008 .

[15]  Frantisek Svec,et al.  Room-temperature bonding for plastic high-pressure microfluidic chips. , 2007, Analytical chemistry.

[16]  Microfluidic routing of aqueous and organic flows at high pressures: fabrication and characterization of integrated polymer microvalve elements. , 2005, Lab on a chip.

[17]  A. Khademhosseini,et al.  A reusable high aspect ratio parylene-C shadow mask technology for diverse micropatterning applications , 2008 .

[18]  K. Najafi,et al.  Characterization of low-temperature wafer bonding using thin-film parylene , 2005, Journal of Microelectromechanical Systems.

[19]  Peter Enoksson,et al.  Low temperature full wafer adhesive bonding of structured wafers , 2000 .

[20]  S. Takeuchi,et al.  Fabrication of Flexible Neural Probes With Built-In Microfluidic Channels by Thermal Bonding of Parylene , 2006, Journal of Microelectromechanical Systems.

[21]  P. Renaud,et al.  Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. , 2004, Biosensors & bioelectronics.

[22]  Russell R. A. Callahan,et al.  Effects of gas pressure and substrate temperature on the etching of parylene-N using a remote microwave oxygen plasma , 2001 .

[23]  Yu-Chong Tai,et al.  Biocomplatible parylene neurocages , 2005, IEEE Engineering in Medicine and Biology Magazine.

[24]  T. Shepodd,et al.  On-chip high-pressure picoliter injector for pressure-driven flow through porous media. , 2004, Analytical chemistry.

[25]  Martin A M Gijs,et al.  Label-free detection of DNA with interdigitated micro-electrodes in a fluidic cell. , 2008, Lab on a chip.

[26]  K. Wise,et al.  High-performance temperature-programmed microfabricated gas chromatography columns , 2005, Journal of Microelectromechanical Systems.

[27]  M. Gijs,et al.  Elastomer mask for powder blasting microfabrication , 2005 .

[28]  D. DeVoe,et al.  Bonding of thermoplastic polymer microfluidics , 2009 .

[29]  M. Agah,et al.  Microfabricated Gas Chromatography Columns With Monolayer-Protected Gold Stationary Phases , 2010, Journal of Microelectromechanical Systems.

[30]  Yu-Chong Tai,et al.  Parylene etching techniques for microfluidics and bioMEMS , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[31]  Vikramaditya G. Yadav,et al.  Cell and protein compatibility of parylene-C surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[32]  K. Moon,et al.  Wafer bonding using microwave heating of parylene intermediate layers , 2004 .

[33]  D. Paul,et al.  Lamination‐based rapid prototyping of microfluidic devices using flexible thermoplastic substrates , 2007, Electrophoresis.

[34]  S. Gawad,et al.  Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. , 2001, Lab on a chip.

[35]  A. Ettouhami,et al.  Thermal buckling of silicon capacitive pressure sensor , 1996 .

[36]  Weileun Fang,et al.  Implementation of silicon-on-glass MEMS devices with embedded through-wafer silicon vias using the glass reflow process for wafer-level packaging and 3D chip integration , 2008 .

[37]  Byungkyu Kim,et al.  Theoretical and experimental studies on the parylene diaphragms for microdevices , 2005 .

[38]  S. Takayama,et al.  Microfluidics for flow cytometric analysis of cells and particles , 2005, Physiological measurement.

[39]  T. Shepodd,et al.  High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths. , 2002, Analytical chemistry.

[40]  C. Quan,et al.  Wafer-level BCB bonding using a thermal press for microfluidics , 2009 .

[41]  M. Agah,et al.  High-Speed MEMS-Based Gas Chromatography , 2004, Journal of Microelectromechanical Systems.

[42]  Abdirahman Ali Yussuf,et al.  Sealing of polymeric-microfluidic devices by using high frequency electromagnetic field and screen printing technique , 2007 .

[43]  Anne-Marie Gué,et al.  A low cost and hybrid technology for integrating silicon sensors or actuators in polymer microfluidic systems , 2008 .