Hierarchical characterization of energy landscapes using Gaussian packet states

We present a new method for exploring multidimensional energy landscapes by using Gaussian packets to characterize metastable states. Focusing on spatial scaling properties of the energy function, we derive nonlinear self‐consistent packet equations which determine the parameters of these Gaussian packets. This provides a unique definition of the thermodynamic properties of metastable states and a computational prescription for their calculation. The packet equations allow bifurcation and enable us to follow the ‘‘trajectories’’ of states as functions of temperature and to determine the hierarchical relationships between states. The method is demonstrated on simple one‐dimensional models and on Lennard‐Jones six‐, seven‐, and eight‐atom microclusters. We find that the microcluster state trajectories that are connected to lowest zero‐temperature energy conformations are also connected to the lowest free‐energy trajectories up to their destabilization temperatures. That is, the global minima have a ‘‘strong scaling’’ property that can accelerate searches for global minima by scale‐dependent annealing methods.

[1]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[2]  J. Raich,et al.  Isomeric structures and structural transformations in small clusters , 1976 .

[3]  W. Kabsch A solution for the best rotation to relate two sets of vectors , 1976 .

[4]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[5]  Thomas A. Weber,et al.  Hidden structure in liquids , 1982 .

[6]  M. R. Hoare,et al.  Morphology and statistical statics of simple microclusters , 1983 .

[7]  M. Mézard,et al.  Replica symmetry breaking and the nature of the spin glass phase , 1984 .

[8]  R. Berry,et al.  Melting of clusters and melting , 1984 .

[9]  M. A. Virasoro,et al.  The microstructure of ultrametricity , 1985 .

[10]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[11]  R. Stephen Berry,et al.  The onset of nonrigid dynamics and the melting transition in Ar7 , 1986 .

[12]  Thomas L. Beck,et al.  Solid–liquid phase changes in simulated isoenergetic Ar13 , 1986 .

[13]  G. Toulouse,et al.  Ultrametricity for physicists , 1986 .

[14]  M. Karplus,et al.  Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. , 1987, Science.

[15]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[16]  N. Quirke The Microcrystal Melting Transition , 1988 .

[17]  M. Karplus,et al.  Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics , 1988 .

[18]  R Elber,et al.  Reaction path study of conformational transitions and helix formation in a tetrapeptide. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Sugano,et al.  Structural fluctuation and atom-permutation in transition-metal clusters , 1989 .

[20]  H. Scheraga,et al.  On the multiple-minima problem in the conformational analysis of molecules: deformation of the potential energy hypersurface by the diffusion equation method , 1989 .

[21]  Panos M. Pardalos,et al.  Recent Advances in Global Optimization , 1991 .

[22]  H. Scheraga,et al.  Performance of the diffusion equation method in searches for optimum structures of clusters of Lennard-Jones atoms , 1991 .

[23]  J. B. Johnson,et al.  Ligand binding to heme proteins: connection between dynamics and function. , 1991, Biochemistry.

[24]  Israeloff,et al.  Spin-fluctuation statistics in CuMn. , 1991, Physical review. B, Condensed matter.

[25]  David Shalloway,et al.  Application of the renormalization group to deterministic global minimization of molecular conformation energy functions , 1992, J. Glob. Optim..

[26]  J. C. Niel,et al.  Conformational distribution of heptaalanine: Analysis using a new Monte Carlo chain growth method , 1992 .

[27]  H. Scheraga,et al.  Application of the diffusion equation method for global optimization to oligopeptides , 1992 .

[28]  J. Straub,et al.  Approximate solution of the classical Liouville equation using Gaussian phase packet dynamics: Application to enhanced equilibrium averaging and global optimization , 1993 .

[29]  Structural and ultrametric properties of (L-alanine)20 , 1993, cond-mat/9303022.

[30]  Michael B. Weissman,et al.  What is a spin glass? A glimpse via mesoscopic noise , 1993 .

[31]  D Thirumalai,et al.  Exploring the energy landscape in proteins. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Thomas F. Coleman,et al.  Isotropic effective energy simulated annealing searches for low energy molecular cluster states , 1993, Comput. Optim. Appl..

[33]  Thomas F. Coleman,et al.  A parallel build-up algorithm for global energy minimizations of molecular clusters using effective energy simulated annealing , 1993, J. Glob. Optim..

[34]  Jianpeng Ma,et al.  Simulated annealing using the classical density distribution , 1994 .