THE COMPUTER AS A TOOL FOR LEARNING THROUGH REFLECTION

A unique aspect of computers is that they not only represent process but also naturally keep track of the actions used to carry out a given task, so that the process with its trace can become an object of study in its own right. One effect of this can be seen vividly in the sciences, where computers and computational languages have improved our ability to develop and test process theories of complex natural phenomena. Before powerful computers became readily available as scientific tools, process models were expressed in mathematical languages, such as differential equations— languages primarily effective in capturing a static “snapshot” of a process. Computation provided formal languages that are more flexible than mathematics but just as precise. In part because computation is itself dynamic, it provides an ideal medium for representing and testing richer, more varied, and more detailed theories of process. The use of this medium for process modeling has radically changed the nature of many current theories in both the physical and social sciences. Particularly in the arena of the cognitive sciences, computational techniques have proved to be powerful tools for both experimental and theoretical investigations of the mind.