Imposing correct jellium response is key to predict the density response by orbital-free DFT

Orbital-free density functional theory (OF-DFT) constitutes a computationally highly effective tool for modeling electronic structures of systems ranging from room-temperature materials to warm dense matter. Its accuracy critically depends on the employed kinetic energy (KE) density functional, which has to be supplied as an external input. In this work we consider several nonlocal and Laplacian-level KE functionals and use an external harmonic perturbation to compute the static density response at T=0 K in the linear and beyond linear response regimes. We test for the satisfaction of exact conditions in the limit of uniform densities and for how approximate KE functionals reproduce the density response of realistic materials (e.g., Al and Si) against the Kohn-Sham DFT reference which employs the exact KE. The results illustrate that several functionals violate exact conditions in the UEG limit. We find a strong correlation between the accuracy of the KE functionals in the UEG limit and in the strongly inhomogeneous case. This empirically demonstrates the importance of imposing the limit of UEG response for uniform densities and validates the use of the Lindhard function in the formulation of kernels for nonlocal functionals. This conclusion is substantiated by additional calculations for bulk Aluminum (Al) with a face-centered cubic (fcc) lattice and Silicon (Si) with an fcc lattice, body-centered cubic (bcc) lattice, and semiconducting crystal diamond (cd) state. The analysis of fcc Al, and fcc as well as bcc Si data follows closely the conclusions drawn for the UEG, allowing us to extend our conclusions to realistic systems that are subject to density inhomogeneities induced by ions.

[1]  M. Pavanello,et al.  Orbital-Free Density Functional Theory: An Attractive Electronic Structure Method for Large-Scale First-Principles Simulations. , 2023, Chemical reviews.

[2]  J. Vorberger,et al.  Averaging over atom snapshots in linear-response TDDFT of disordered systems: A case study of warm dense hydrogen. , 2023, The Journal of chemical physics.

[3]  J. Vorberger,et al.  Unravelling the nonlinear ideal density response of many-body systems , 2023, Europhysics Letters.

[4]  M. Pavanello,et al.  Linear-response time-dependent density functional theory approach to warm dense matter with adiabatic exchange-correlation kernels , 2023, Physical Review Research.

[5]  T. Preston,et al.  Electronic density response of warm dense matter , 2022, Physics of Plasmas.

[6]  J. Vorberger,et al.  Non-empirical Mixing Coefficient for Hybrid XC Functionals from Analysis of the XC Kernel , 2022, The journal of physical chemistry letters.

[7]  J. Vorberger,et al.  Assessing the accuracy of hybrid exchange-correlation functionals for the density response of warm dense electrons. , 2022, The Journal of chemical physics.

[8]  Xuecheng Shao,et al.  Efficient time-dependent orbital-free density functional theory: Semilocal adiabatic response , 2022, Physical Review B.

[9]  J. Vorberger,et al.  Ab Initio Static Exchange–Correlation Kernel across Jacob’s Ladder without Functional Derivatives , 2022, Journal of chemical theory and computation.

[10]  F. Della Sala Orbital-free methods for plasmonics: Linear response. , 2022, The Journal of chemical physics.

[11]  Xuecheng Shao,et al.  Accelerating equilibration in first-principles molecular dynamics with orbital-free density functional theory , 2022, Physical Review Research.

[12]  A. Baczewski,et al.  Ab initio study of shock-compressed copper , 2022, Physical Review B.

[13]  J. Vorberger,et al.  Static Electronic Density Response of Warm Dense Hydrogen: Ab Initio Path Integral Monte Carlo Simulations. , 2022, Physical review letters.

[14]  L. Constantin,et al.  Kinetic Energy Density Functionals Based on a Generalized Screened Coulomb Potential: Linear Response and Future Perspectives , 2022, Comput..

[15]  J. Vorberger,et al.  Density Functional Theory Perspective on the Nonlinear Response of Correlated Electrons across Temperature Regimes , 2022, Journal of chemical theory and computation.

[16]  S. X. Hu,et al.  On the liquid–liquid phase transition of dense hydrogen , 2021, Nature.

[17]  J. Vorberger,et al.  Benchmarking exchange-correlation functionals in the spin-polarized inhomogeneous electron gas under warm dense conditions , 2021, Physical Review B.

[18]  B. Sadigh,et al.  Properties of carbon up to 10 million kelvin from Kohn-Sham density functional theory molecular dynamics. , 2021, Physical review. E.

[19]  F. Graziani,et al.  Shock physics in warm dense matter: A quantum hydrodynamics perspective , 2021, Contributions to Plasma Physics.

[20]  Xuecheng Shao,et al.  Nonlocal and nonadiabatic Pauli potential for time-dependent orbital-free density functional theory , 2021, Physical Review B.

[21]  J. Vorberger,et al.  The relevance of electronic perturbations in the warm dense electron gas. , 2021, The Journal of chemical physics.

[22]  N. Mortensen,et al.  Mesoscopic electrodynamics at metal surfaces , 2021, Nanophotonics.

[23]  Xuecheng Shao,et al.  Efficient DFT Solver for Nanoscale Simulations and Beyond. , 2021, The journal of physical chemistry letters.

[24]  M. Bonitz,et al.  Density response of the warm dense electron gas beyond linear response theory: Excitation of harmonics , 2021, Physical Review Research.

[25]  F. Graziani,et al.  Towards a quantum fluid theory of correlated many-fermion systems from first principles , 2021, SciPost Physics.

[26]  M. Pavanello,et al.  Time-dependent orbital-free density functional theory: Background and Pauli kernel approximations , 2021, 2102.06174.

[27]  K. Varga,et al.  Coupled Maxwell and time-dependent orbital-free density functional calculations , 2020, Physical Review B.

[28]  M. Bonitz,et al.  Screening of a test charge in a free‐electron gas at warm dense matter and dense non‐ideal plasma conditions , 2020, Contributions to Plasma Physics.

[29]  T. Ramazanov,et al.  Melting, freezing, and dynamics of two-dimensional dipole systems in screening bulk media. , 2020, Physical review. E.

[30]  H. Kählert Thermodynamic and transport coefficients from the dynamic structure factor of Yukawa liquids , 2020 .

[31]  H. M. Baghramyan,et al.  Laplacian-Level Quantum Hydrodynamic Theory for Plasmonics , 2020, 2006.03973.

[32]  M. Bonitz,et al.  Nonlinear Electronic Density Response in Warm Dense Matter. , 2020, Physical review letters.

[33]  N. A. Pike,et al.  ABINIT: Overview and focus on selected capabilities. , 2020, The Journal of chemical physics.

[34]  Wei Chen,et al.  The Abinit project: Impact, environment and recent developments , 2020, Comput. Phys. Commun..

[35]  Xuecheng Shao,et al.  DFTpy: An efficient and object‐oriented platform for orbital‐free DFT simulations , 2020, WIREs Computational Molecular Science.

[36]  S. Trickey,et al.  Towards accurate orbital-free simulations: A generalized gradient approximation for the noninteracting free energy density functional , 2020, Physical Review B.

[37]  T. Ramazanov,et al.  Quantum hydrodynamics for plasmas—Quo vadis? , 2019, Physics of Plasmas.

[38]  E. Carter,et al.  Kinetic energy density of nearly free electrons. II. Response functionals of the electron density , 2019, Physical Review B.

[39]  E. Carter,et al.  Kinetic energy density of nearly free electrons. I. Response functionals of the external potential , 2019, Physical Review B.

[40]  M. Pavanello,et al.  Orbital-free density functional theory correctly models quantum dots when asymptotics, nonlocality, and nonhomogeneity are accounted for , 2019, Physical Review B.

[41]  F. Della Sala,et al.  Performance of Semilocal Kinetic Energy Functionals for Orbital-Free Density Functional Theory. , 2019, Journal of chemical theory and computation.

[42]  T. Ramazanov,et al.  Dynamical structure factor of strongly coupled ions in a dense quantum plasma. , 2019, Physical review. E.

[43]  S. Trickey,et al.  A simple generalized gradient approximation for the noninteracting kinetic energy density functional , 2018, Physical Review B.

[44]  Johannes M. Dieterich,et al.  Orbital-free density functional theory for materials research , 2018 .

[45]  F. Della Sala,et al.  Semilocal Pauli-Gaussian Kinetic Functionals for Orbital-Free Density Functional Theory Calculations of Solids. , 2018, The journal of physical chemistry letters.

[46]  M. Murillo,et al.  A viscous quantum hydrodynamics model based on dynamic density functional theory , 2017, Scientific Reports.

[47]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  T. Ramazanov,et al.  Gradient correction and Bohm potential for two‐ and one‐dimensional electron gases at a finite temperature , 2017, 1709.05310.

[49]  T. Ramazanov,et al.  Ion potential in non‐ideal dense quantum plasmas , 2017, 1709.05316.

[50]  T. Ramazanov,et al.  Theoretical foundations of quantum hydrodynamics for plasmas , 2017, 1709.02196.

[51]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  M. Pavanello,et al.  Nonlocal kinetic energy functionals by functional integration. , 2017, The Journal of chemical physics.

[53]  L. Constantin,et al.  Jellium-with-gap model applied to semilocal kinetic functionals , 2017, 1705.06034.

[54]  Ulf R. Pedersen,et al.  Thermodynamics of freezing and melting , 2016, Nature Communications.

[55]  Fang Liu,et al.  Recent developments in the ABINIT software package , 2016, Comput. Phys. Commun..

[56]  D. Saumon,et al.  Ionic Transport Coefficients of Dense Plasmas without Molecular Dynamics. , 2016, Physical review letters.

[57]  J. Daligault,et al.  Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  T. Ramazanov,et al.  Statically screened ion potential and Bohm potential in a quantum plasma , 2015, 1508.01120.

[59]  J. Daligault,et al.  Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes. , 2014, Physical review letters.

[60]  S. Mikhailov Nonlinear electromagnetic response of a uniform electron gas. , 2014, Physical review letters.

[61]  B. Reville,et al.  SCALING OF MAGNETO-QUANTUM-RADIATIVE HYDRODYNAMIC EQUATIONS: FROM LASER-PRODUCED PLASMAS TO ASTROPHYSICS , 2014, 1401.7880.

[62]  J. Daligault,et al.  Nonlocal orbital-free noninteracting free-energy functional for warm dense matter , 2013 .

[63]  J. Harris,et al.  Orbital-free density-functional theory simulations of the dynamic structure factor of warm dense aluminum. , 2013, Physical review letters.

[64]  S. Dutta,et al.  Uniform electron gas at warm, dense matter conditions , 2013 .

[65]  A. Aguado,et al.  An Orbital Free ab initio Method: Applications to Liquid Metals and Clusters , 2013 .

[66]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[67]  Emily A. Carter,et al.  Nonlocal orbital-free kinetic energy density functional for semiconductors , 2010 .

[68]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[69]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[70]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[71]  Giovanni Vignale,et al.  Quantum Theory of the Electron Liquid , 2005 .

[72]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[73]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[74]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[75]  N. Govind,et al.  Orbital-free kinetic-energy density functionals with a density-dependent kernel , 1999 .

[76]  Wang,et al.  Kinetic-energy functional of the electron density. , 1992, Physical review. B, Condensed matter.

[77]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[78]  Hiroshi Iyetomi,et al.  Statistical physics of dense plasmas: Thermodynamics, transport coefficients and dynamic correlations , 1987 .

[79]  F. Perrot Gradient correction to the statistical electronic free energy at nonzero temperatures: Application to equation-of-state calculations , 1979 .

[80]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[81]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[82]  Chen Huang,et al.  PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics Transferable local pseudopotentials for magnesium, aluminum and silicon , 2008 .

[83]  E. Carter,et al.  Orbital-Free Kinetic-Energy Density Functional Theory , 2002 .

[84]  A. A. Kugler,et al.  BOUNDS FOR SOME EQUILIBRIUM PROPERTIES OF AN ELECTRON GAS. , 1970 .