Electron and ion kinetic effects on non-linearly driven electron plasma and ion acoustic waves

Fully non-linear kinetic simulations of electron plasma and ion acoustic waves (IAWs) have been carried out with a new multi-species, parallelized Vlasov code. The numerical implementation of the Vlasov model and the methods used to compute the wave frequency are described in detail. For the first time, the nonlinear frequency of IAWs, combining the contributions from electron and ion kinetic effects and from harmonic generation, has been calculated and compared to Vlasov results. Excellent agreement of theory with simulation results is shown at all amplitudes, harmonic generation being an essential component at large amplitudes. For IAWs, the positive frequency shift from trapped electrons is confirmed and is dominant for the effective electron-to-ion temperature ratio, Z Te/Ti ≳ 10 with Z as the charge state. Furthermore, numerical results demonstrate unambiguously the dependence [R. L. Dewar, Phys. Fluids 15, 712 (1972)] of the kinetic shifts on details of the distribution of the trapped particles, whi...

[1]  V. Tikhonchuk,et al.  Electron kinetic effects in the nonlinear evolution of a driven ion-acoustic wave. , 2005, Physical review letters.

[2]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[3]  Réal R. J. Gagné,et al.  Splitting schemes for the numerical solution of a two-dimensional Vlasov equation , 1978 .

[4]  Richard L. Berger,et al.  Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facilitya) , 2009 .

[5]  N. Fisch,et al.  Adiabatic nonlinear waves with trapped particles: I. General formalism , 2011, 1107.3071.

[6]  P. Michel,et al.  Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility a) , 2010 .

[7]  L. Yin,et al.  Nonlinear spectral signatures and spatiotemporal behavior of stimulated Raman scattering from single laser speckles. , 2005, Physical review letters.

[8]  Edward I. Moses,et al.  Experiments and multiscale simulations of|[nbsp]|laser propagation through ignition-scale|[nbsp]|plasmas , 2007 .

[9]  N. Fisch,et al.  Simplified Model of Nonlinear Landau Damping , 2009 .

[10]  V. Tikhonchuk,et al.  Parametric instability of a driven ion-acoustic wave , 2005 .

[11]  K. Bowers,et al.  Saturation of backward stimulated scattering of a laser beam in the kinetic regime. , 2007, Physical review letters.

[12]  B. Trubnikov Particle Interactions in a Fully Ionized Plasma , 1965 .

[13]  W. Kruer,et al.  Nonlinear features of stimulated Brillouin and Raman scattering , 1989 .

[14]  L. Divol,et al.  Nonlinear saturation of stimulated Brillouin scattering for long time scales , 2003 .

[15]  A. B. Langdon,et al.  Modeling the nonlinear saturation of stimulated Brillouin backscatter in laser heated plasmas , 2003 .

[16]  H. Rose Langmuir wave self-focusing versus decay instability , 2004, physics/0405015.

[17]  T. M. O'Neil,et al.  The Collisionless Damping of Nonlinear Plasma Oscillations. , 1965 .

[18]  P. Bertrand,et al.  Saturation process induced by vortex-merging in numerical Vlasov-Maxwell experiments of stimulated Raman backscattering , 2007 .

[19]  Stephan Brunner,et al.  Two-dimensional Vlasov simulation of electron plasma wave trapping, wavefront bowing, self-focusing, and sideloss , 2011 .

[20]  D. Barnes The bounce-kinetic model for driven nonlinear Langmuir waves , 2004 .

[21]  V. Tikhonchuk,et al.  Electron and ion kinetic effects in the saturation of a driven ion acoustic wave , 2005 .

[22]  Alain Ghizzo,et al.  A Vlasov code for the numerical simulation of stimulated Raman scattering , 1990 .

[23]  Kinetic-Ion Simulations Addressing Whether Ion Trapping Inflates Stimulated Brillouin Backscattering Reflectivities , 2007, 0706.1236.

[24]  A. B. Langdon,et al.  Effects of ion-ion collisions and inhomogeneity in two-dimensional kinetic ion simulations of stimulated Brillouin backscattering , 2006 .

[25]  Magdi Shoucri,et al.  Study of laser plasma interactions using an Eulerian Vlasov code , 2004, Comput. Phys. Commun..

[26]  D. Strozzi,et al.  Nonlinear kinetic description of Raman growth using an envelope code, and comparisons with Vlasov simulations , 2010 .

[27]  Adiabatic nonlinear waves with trapped particles. III. Wave dynamics , 2011, 1107.3075.

[28]  L. Gremillet,et al.  Nonlinear plasma response to a slowly varying electrostatic wave, and application to stimulated Raman scattering , 2007 .

[29]  H. Schamel Cnoidal electron hole propagation: Trapping, the forgotten nonlinearity in plasma and fluid dynamics , 2012 .

[30]  Robert Dewar,et al.  Frequency Shift Due to Trapped Particles , 1972 .

[31]  N. Fisch,et al.  Evolution Of Nonlinear Waves in Compressing Plasma , 2011 .

[32]  D. Strozzi,et al.  Breakdown of electrostatic predictions for the nonlinear dispersion relation of a stimulated Raman scattering driven plasma wave , 2008 .

[33]  E. Valeo,et al.  Trapped-particle instability leading to bursting in stimulated Raman scattering simulations. , 2004, Physical review letters.

[34]  W. Manheimer,et al.  Modulational Instabilities Due to Trapped Electrons , 1972 .

[35]  W. Mori,et al.  Propagation and damping of nonlinear plasma wave packets. , 2009, Physical review letters.

[36]  D. Strozzi,et al.  Kinetic enhancement of Raman backscatter, and electron acoustic Thomson scatter , 2006, physics/0610029.

[37]  Milo R. Dorr,et al.  Effects of ion trapping on crossed-laser-beam stimulated Brillouin scattering , 2004 .

[38]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[39]  D. Dubois,et al.  Transient enhancement and detuning of laser-driven parametric instabilities by particle trapping. , 2001, Physical review letters.

[40]  A. Langdon,et al.  Resonantly excited nonlinear ion waves , 1997 .

[41]  Adiabatic nonlinear waves with trapped particles. II. Wave dispersion , 2011, 1107.3074.

[42]  L. Divol,et al.  Saturation of Stimulated Brillouin Backscattering in Two-dimensional Kinetic Ion Simulations , 2004 .

[43]  A. B. Langdon,et al.  Filamentation and forward Brillouin scatter of entire smoothed and aberrated laser beams , 2000 .

[44]  M. J. Edwards,et al.  Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies , 2009, Science.

[45]  T. M. O'Neil,et al.  Nonlinear Frequency Shift of an Electron Plasma Wave , 1972 .

[46]  Nonlinear travelling waves in energetic particle phase space , 2009 .

[47]  W. Mori,et al.  The relative importance of fluid and kinetic frequency shifts of an electron plasma wave , 2007 .

[48]  M. Shoucri,et al.  Stability of Bernstein–Greene–Kruskal plasma equilibria. Numerical experiments over a long time , 1988 .

[49]  Self-consistent Langmuir waves in resonantly driven thermal plasmas , 2007, physics/0701288.

[50]  M. Kruskal,et al.  Exact Nonlinear Plasma Oscillations , 1957 .

[51]  D. Russell,et al.  A self-consistent trapping model of driven electron plasma waves and limits on stimulated Raman scatter , 2001 .

[52]  W. Manheimer,et al.  Formation of Stationary Large Amplitude Waves in Plasmas , 1971 .

[53]  Reduced kinetic descriptions of weakly driven plasma waves , 2007 .

[54]  Comparisons between nonlinear kinetic modelings of simulated Raman scattering using envelope equations , 2012 .

[55]  A. B. Langdon,et al.  On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams , 1998 .

[56]  M. R. Feix,et al.  A nonperiodic Euler–Vlasov code for the numerical simulation of laser–plasma beat wave acceleration and Raman scattering , 1990 .