The Quality of the Fossil Record: Implications for Evolutionary Analyses

▪ Abstract Advances in taphonomy and stratigraphy over the past two decades have dramatically improved our understanding of the causes, effects, and remedies of incompleteness in the fossil record for the study of evolution. Taphonomic research has focused on quantifying probabilities of preservation across taxonomic groups, the temporal and spatial resolution of fossil deposits, and secular changes in preservation over the course of the Phanerozoic. Stratigraphic research has elucidated systematic trends in the formation of sedimentary gaps and permanent stratigraphic records, the quantitative consequences of environmental change and variable rock accumulation rates over short and long timescales, and has benefited from greatly improved methods of correlation and absolute age determination. We provide examples of how these advances are transforming paleontologic investigations of the tempo and mode of morphologic change, phylogenetic analysis, and the environmental and temporal analysis of macroevolution...

[1]  D. Osleger,et al.  Comparative analysis of methods used to define eustatic variations in outcrop: Late Cambrian interbasinal sequence development , 1993 .

[2]  M. Davis Palynology after Y2K—Understanding the Source Area of Pollen in Sediments , 2000 .

[3]  D. Jablonski The tropics as a source of evolutionary novelty through geological time , 1993, Nature.

[4]  E. Vrba Environment and evolution: alternative causes of the temporal distribution of evolutionary events , 1985 .

[5]  P. Gingerich The Stratophenetic Approach to Phylogeny Reconstruction in Vertebrate Paleontology , 1979 .

[6]  P. Rees Land-plant diversity and the end-Permian mass extinction , 2002 .

[7]  S. Holland Recognizing artifactually generated coordinated stasis: implications of numerical models and strategies for field tests , 1996 .

[8]  G. Daley Environmentally controlled variation in shell size of Ambonychia Hall (Mollusca, Bivalvia) in the type Cincinnatian (Upper Ordovician) , 1999 .

[9]  P. Sheehan,et al.  Sudden extinction of the dinosaurs: latest Cretaceous, upper Great Plains, USA. , 1991, Science.

[10]  Charles R. Marshall,et al.  Confidence intervals on stratigraphic ranges with nonrandom distributions of fossil horizons , 1997, Paleobiology.

[11]  L. Hinnov New Perspectives on Orbitally Forced Stratigraphy , 2000 .

[12]  A. Cohen The taphonomy of gastropod shell accumulations in large lakes: an example from Lake Tanganyika, Africa , 1989, Paleobiology.

[13]  S. Holland,et al.  Patterns of turnover in Middle and Upper Ordovician brachiopods of the eastern United States: a test of coordinated stasis , 1997, Paleobiology.

[14]  C. Brett Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments , 1995 .

[15]  P. R. Sheldon Parallel gradualistic evolution of Ordovician trilobites , 1987, Nature.

[16]  A. Smith,et al.  Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[17]  M. H. Anders,et al.  A New Look at Sedimentation Rates and the Completeness of the Stratigraphic Record , 1987, The Journal of Geology.

[18]  J. W. Valentine,et al.  Scales of climatic variability and time averaging in Pleistocene biotas: implications for ecology and evolution. , 1996, Trends in ecology & evolution.

[19]  M. Kowalewski Taphonomy of a living fossil; the lingulide brachiopod Glottidia palmeri Dall from Baja California, Mexico , 1996 .

[20]  C. Mitchell,et al.  The stratigraphic distribution of graptolites in the classic upper Middle Ordovician Utica Shale of New York State: an evolutionary succession or a response to relative sea-level change? , 1999, Paleobiology.

[21]  G. R. McGhee Biological and evolutionary responses to transgressive-regressive cycles , 1992 .

[22]  A. Cheetham,et al.  Phylogeny reconstruction and the tempo of speciation in cheilostome Bryozoa , 1994, Paleobiology.

[23]  Steven M. Holland,et al.  Models for simulating the fossil record , 1999 .

[24]  N. Macleod,et al.  Hiatus distributions and mass extinctions at the Cretaceous/Tertiary boundary , 1991 .

[25]  Steven M. Holland,et al.  Biofacies Replacement in a Sequence Stratigraphic Framework: Middle and Upper Ordovician of the Nashville Dome, Tennessee, USA , 1999 .

[26]  Philip M. Novack-Gottshall,et al.  Effects of sampling standardization on estimates of Phanerozoic marine diversification , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  W. D. Liddell,et al.  Comparative taphonomy of bivalves and foraminifera from Holocene tidal flat sediments, Bahia la Choya, Sonora, Mexico (Northern Gulf of California): taphonomic grades and temporal resolution , 1996, Paleobiology.

[28]  P. Copper Reefs during the multiple crises towards the Ordovician-Silurian boundary: Anticosti Island, eastern Canada, and worldwide , 2001 .

[29]  D. J. Strauss,et al.  Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges , 1989 .

[30]  S. Holland The quality of the fossil record: a sequence stratigraphic perspective , 2000, Paleobiology.

[31]  David Jablonski,et al.  Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology , 2000, Paleobiology.

[32]  G. O. Chandlee,et al.  Clinal variation, episodic evolution, and possible parapatric speciation: the trilobite Flexicalymene senaria along an Ordovician depth gradient , 1982 .

[33]  N. M. Brooke,et al.  A molecular timescale for vertebrate evolution , 1998, Nature.

[34]  C. Marshall,et al.  Sudden and Gradual Molluscan Extinctions in the Latest Cretaceous of Western European Tethys , 1996, Science.

[35]  J. Sepkoski,et al.  Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals. , 1999, Science.

[36]  P. Pamilo,et al.  Molecular Population Genetics of Social Insects , 1997 .

[37]  P. Allison,et al.  Exceptional fossil record: Distribution of soft-tissue preservation through the Phanerozoic , 1993 .

[38]  A. Knoll,et al.  Calibrating rates of early Cambrian evolution. , 1993, Science.

[39]  M. Kučera,et al.  Differences between evolution of mean form and evolution of new morphotypes: an example from Late Cretaceous planktonic foraminifera , 1998, Paleobiology.

[40]  S. Hedges,et al.  Molecular Evidence for the Early Colonization of Land by Fungi and Plants , 2001, Science.

[41]  C. Peterson The paleoecological significance of undetected short-term temporal variability , 1977 .

[42]  A. Gale,et al.  Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies , 2001, Paleobiology.

[43]  Jeffrey S. Levinton,et al.  Molecular Evidence for Deep Precambrian Divergences Among Metazoan Phyla , 1996, Science.

[44]  S. Kidwell,et al.  The Quality of the Fossil Record: Populations, Species, and Communities , 1996 .

[45]  Marie-Pierre Aubry,et al.  A revised Cenozoic geochronology and chronostratigraphy , 1995 .

[46]  R. Potts,et al.  Late pliocene faunal turnover in the turkana basin, kenya and ethiopia , 1997, Science.

[47]  D. Erwin,et al.  A New Look at Evolutionary Rates in Deep Time: Uniting Paleontology and High-Precision Geochronology , 1998 .

[48]  Michael Foote,et al.  Origination and Extinction through the Phanerozoic: A New Approach , 2003, The Journal of Geology.

[49]  M. Foote On the probability of ancestors in the fossil record , 1996, Paleobiology.

[50]  P. Allison,et al.  Book Reviews: Taphonomy. Releasing the Data Locked in the Fossil Record. , 1991 .

[51]  M. Chapman Biotic Response to Global Change: The response of planktonic foraminifera to the Late Pliocene intensification of Northern Hemisphere glaciation , 2000 .

[52]  H. Poinar,et al.  Ancient DNA: Do It Right or Not at All , 2000, Science.

[53]  Arnold I. Miller,et al.  Biotic transitions in global marine diversity. , 1998, Science.

[54]  M. Saltzman Upper Cambrian Carbonate Platform Evolution, Elvinia and Taenicephalus Zones (Pterocephaliid--Ptychaspid Biomere Boundary), Northwestern Wyoming , 1999 .

[55]  N. Macleod,et al.  Punctuated anagenesis and the importance of stratigraphy to paleobiology , 1991, Paleobiology.

[56]  J. W. Valentine How good was the fossil record? Clues from the Californian Pleistocene , 1989, Paleobiology.

[57]  S. Kidwell Time-averaged molluscan death assemblages: Palimpsests of richness, snapshots of abundance , 2002 .

[58]  J. Sepkoski,et al.  A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions , 1984, Paleobiology.

[59]  Arnold I. Miller,et al.  Joint estimation of sampling and turnover rates from fossil databases: capture-mark-recapture methods revisited , 2001, Paleobiology.

[60]  S. Kidwell,et al.  Associations of Vertebrate Skeletal Concentrations and Discontinuity Surfaces in Terrestrial and Shallow Marine Records: A Test in the Cretaceous of Montana , 2000, The Journal of Geology.

[61]  J L Bada,et al.  Preservation of key biomolecules in the fossil record: current knowledge and future challenges. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[62]  W. Murphy,et al.  Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics , 2001, Science.

[63]  Richard D. Norris,et al.  Biased extinction and evolutionary trends , 1991, Paleobiology.

[64]  D. Jablonski,et al.  Geographic variation in the molluscan recovery from the end-cretaceous extinction , 1998, Science.

[65]  S. Kidwell Models for fossil concentrations: paleobiologic implications , 1986, Paleobiology.

[66]  M. Foote THE EVOLUTION OF MORPHOLOGICAL DIVERSITY , 1997 .

[67]  Jeffrey V. Baumgartner,et al.  Utility of lacustrine deposits for the study of variation within fossil samples , 1987 .

[68]  M. Foote Inferring temporal patterns of preservation, origination, and extinction from taxonomic survivorship analysis , 2001, Paleobiology.

[69]  Bruce D. Rabe,et al.  Evolution in a cline: the trilobite Triarthrus along an Ordovician depth gradient , 1980 .

[70]  S. Kidwell The stratigraphy of shell concentrations. , 1991 .

[71]  K. Flessa,et al.  Shell survival and time‐averaging in nearshore and shelf environments: estimates from the radiocarbon literature , 1994 .

[72]  P. Allison,et al.  Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction , 1993 .

[73]  J. Huelsenbeck Comparing the stratigraphic record to estimates of phylogeny , 1994, Paleobiology.

[74]  S. Holland The stratigraphic distribution of fossils , 1995, Paleobiology.

[75]  Charles R. Marshall,et al.  Confidence intervals on stratigraphic ranges , 1990, Paleobiology.

[76]  S. Peters,et al.  Biodiversity in the Phanerozoic: a reinterpretation , 2001, Paleobiology.

[77]  P. Wignall,et al.  Anoxia as a cause of the Permian/Triassic mass extinction : facies evidence from northern Italy and the western United States , 1992 .

[78]  Arnold I. Miller,et al.  A numerical model for the formation of fossil assemblages: estimating the amount of post-mortem transport along environmental gradients , 1990 .

[79]  S. Donovan,et al.  The adequacy of the fossil record , 1998 .

[80]  P. Taylor,et al.  Bryozoan carbonates through time and space , 1998 .

[81]  P. Brenchley,et al.  Patterns in bioclastic accumulation through the Phanerozoic: Changes in input or in destruction? , 1994 .

[82]  M. Kowalewski,et al.  Increase in evenness and sampled alpha diversity through the Phanerozoic: Comparison of early Paleozoic and Cenozoic marine fossil assemblages , 2002 .

[83]  P. Wagner,et al.  Age rank/clade rank metrics--sampling, taxonomy, and the meaning of "stratigraphic consistency". , 2000, Systematic biology.

[84]  David M. Raup,et al.  Phanerozoic marine diversity and the fossil record , 1981, Nature.

[85]  Jere H. Lipps,et al.  Sampling bias, gradual extinction patterns and catastrophes in the fossil record , 1982 .

[86]  Douglas H. Erwin,et al.  Deep Time : Paleobiology's Perspective , 2001 .

[87]  D. Raup,et al.  Mass Extinctions in the Marine Fossil Record , 1982, Science.

[88]  M. Byrnes,et al.  Reduced seasonality of Holocene climate and pervasive mixing of Holocene marine section: Northeastern Gulf of Mexico shelf , 1997 .

[89]  S. Kidwell,et al.  Taphonomy and Time-Averaging of Marine Shelly Faunas , 1991 .

[90]  F. T. Fürsich,et al.  The influence of faunal condensation and mixing on the preservation of fossil benthic communities , 1978 .

[91]  T. Schopf Fossilization potential of an intertidal fauna: Friday Harbor, Washington , 1978, Paleobiology.

[92]  S. Kidwell,et al.  Taphonomy and paleobiology , 2000, Paleobiology.

[93]  T. Olszewski Taking advantage of time-averaging , 1999, Paleobiology.

[94]  D. Erwin,et al.  New approaches to speciation in the fossil record , 1995 .

[95]  D. Jablonski,et al.  Comparative ecology of bryozoan radiations; origin of novelties in cyclostomes and cheilostomes , 1997 .

[96]  P. Sadler Sediment Accumulation Rates and the Completeness of Stratigraphic Sections , 1981, The Journal of Geology.

[97]  A I Miller,et al.  Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends. , 1996, Paleobiology.

[98]  T. Baumiller Exploring the pattern of coordinated stasis: simulations and extinction scenarios , 1996 .

[99]  Alan H. Cutler,et al.  Time-averaging and postmortem skeletal survival in benthic fossil assemblages: quantitative comparisons among Holocene environments , 1997, Paleobiology.

[100]  A. Cheetham,et al.  Tempo and mode of speciation in the sea. , 1999, Trends in ecology & evolution.

[101]  S. Holland,et al.  Stratigraphic Variation in the Timing of First and Last Occurrences , 2002 .

[102]  S. Kidwell Taphonomic expressions of sedimentary hiatuses: field observations on bioclastic concentrations and sequence anatomy in low, moderate and high subsidence settings , 1993 .

[103]  W. S. Arnold,et al.  Time-averaging, evolution, and morphologic variation , 2002, Paleobiology.

[104]  N. Macleod,et al.  Biotic Response to Global Change: Phenotypic response of foraminifera to episodes of global environmental change , 2000 .

[105]  J. Sepkoski,et al.  Biodiversity: Past, Present, and Future , 1997, Journal of Paleontology.

[106]  D. Jablonski,et al.  Environmental Patterns in the Origins of Higher Taxa: The Post-Paleozoic Fossil Record , 1991, Science.

[107]  D. Lazarus,et al.  How synchronous are neogene marine plankton events , 1994 .

[108]  N. Eldredge,et al.  A study of stasis and change in two species lineages from the Middle Devonian of New York state , 1995, Paleobiology.

[109]  M. Mckinney How Biostratigraphic Gaps Form , 1986, The Journal of Geology.

[110]  J. Sepkoski,et al.  Ten years in the library: new data confirm paleontological patterns , 1993, Paleobiology.

[111]  K. Flessa Well-traveled cockles: Shell transport during the Holocene transgression of the southern North Sea , 1998 .

[112]  Arnold I. Miller,et al.  Dissecting global diversity patterns: examples from the Ordovician Radiation. , 1997, Annual review of ecology and systematics.

[113]  H. Dowsett Diachrony of Late Neogene microfossils in the southwest Pacific Ocean: Application of the graphic correlation method , 1988 .