Identification and expression profile of an alpha-COPI homologous gene (COPA1) involved in high irradiance and salinity stress in Haematococcus pluvialis

[1]  D. Kwon,et al.  Agroinfiltration-based expression of hairpin RNA in soybean plants for RNA interference against Tetranychus urticae. , 2017, Pesticide biochemistry and physiology.

[2]  Francisco Vera-Sirera,et al.  α2-COP is involved in early secretory traffic in Arabidopsis and is required for plant growth , 2016, Journal of experimental botany.

[3]  Jiangxin Wang,et al.  A β-carotene ketolase gene (bkt1) promoter regulated by sodium acetate and light in a model green microalga Chlamydomonas reinhardtii , 2016 .

[4]  Natalia Gomez-Navarro,et al.  COP-coated vesicles , 2016, Current Biology.

[5]  E. Androphy,et al.  α-COP binding to the survival motor neuron protein SMN is required for neuronal process outgrowth. , 2015, Human molecular genetics.

[6]  I. Hwang,et al.  Physiological Functions of the COPI Complex in Higher Plants , 2015, Molecules and cells.

[7]  J. Briggs,et al.  A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly , 2015, Science.

[8]  A. Zarka,et al.  Advanced methods for genetic engineering of Haematococcus pluvialis (Chlorophyceae, Volvocales) , 2015 .

[9]  Lei Chen,et al.  Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions. , 2014, Bioresource technology.

[10]  Y. Gibon,et al.  Metabolite Profiling and Integrative Modeling Reveal Metabolic Constraints for Carbon Partitioning under Nitrogen Starvation in the Green Algae Haematococcus pluvialis* , 2014, The Journal of Biological Chemistry.

[11]  Q. Hu,et al.  Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis , 2014, Journal of experimental botany.

[12]  Robert V Farese,et al.  Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting , 2013, eLife.

[13]  Lingling Chen,et al.  Induction of salicylic acid (SA) on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis. , 2012, Enzyme and microbial technology.

[14]  Q. Hu,et al.  SUSCEPTIBILITY AND PROTECTIVE MECHANISMS OF MOTILE AND NON MOTILE CELLS OF HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE) TO PHOTOOXIDATIVE STRESS 1 , 2012, Journal of phycology.

[15]  Ki-Hyun Kim,et al.  Effects of mutations in the WD40 domain of α-COP on its interaction with the COPI coatomer in Saccharomyces cerevisiae , 2012, The Journal of Microbiology.

[16]  E. Jin,et al.  Transcriptomic analysis of Haematococcus lacustris during astaxanthin accumulation under high irradiance and nutrient starvation , 2011 .

[17]  S. Qin,et al.  Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of beta-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis. , 2010, Bioresource technology.

[18]  J. Goldberg,et al.  Structure of Coatomer Cage Proteins and the Relationship among COPI, COPII, and Clathrin Vesicle Coats , 2010, Cell.

[19]  A. Hoelz,et al.  Crystal structure of α-COP in complex with ϵ-COP provides insight into the architecture of the COPI vesicular coat , 2010, Proceedings of the National Academy of Sciences.

[20]  F. Sukan,et al.  Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. , 2009, New biotechnology.

[21]  Noel Southall,et al.  COPI Complex Is a Regulator of Lipid Homeostasis , 2008, PLoS biology.

[22]  C. Meng,et al.  Characterization of carotenoid hydroxylase gene promoter in Haematococcus pluvialis. , 2006, Indian journal of biochemistry & biophysics.

[23]  A. Zarka,et al.  INHIBITION OF ASTAXANTHIN SYNTHESIS UNDER HIGH IRRADIANCE DOES NOT ABOLISH TRIACYLGLYCEROL ACCUMULATION IN THE GREEN ALGA HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE) 1 , 2005 .

[24]  C. Meng,et al.  Cloning and characterization of beta-carotene ketolase gene promoter in Haematococcus pluvialis. , 2005, Acta biochimica et biophysica Sinica.

[25]  T. Kuroiwa,et al.  Triple Immunofluorescent Labeling of FtsZ, Dynamin, and EF-Tu Reveals a Loose Association Between the Inner and Outer Membrane Mitochondrial Division Machinery in the Red Alga Cyanidioschyzon merolae , 2004, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[26]  R. Duden,et al.  The α- and β′-COP WD40 Domains Mediate Cargo-selective Interactions with Distinct Di-lysine Motifs , 2003 .

[27]  O Gascuel,et al.  BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. , 1997, Molecular biology and evolution.

[28]  F. Chen,et al.  Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae). , 2015, The Plant journal : for cell and molecular biology.

[29]  P. Schenk,et al.  Comparison of astaxanthin accumulation and biosynthesis gene expression of three Haematococcus pluvialis strains upon salinity stress , 2014, Journal of Applied Phycology.

[30]  Meng Chun-xiao Three 5’-flanking Regions of crtO Encoding β-carotene Oxygenase in Haematococcus pluvialis , 2010 .

[31]  Kathleen Marchal,et al.  PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences , 2002, Nucleic Acids Res..