Thermal Equation of State of Natural F-Rich Topaz up to 29 GPa and 750 K

[1]  Junfeng Zhang,et al.  Effects of Water on the Rheology of Dominant Minerals and Rocks in the Continental Lower Crust: A Review , 2020, Journal of Earth Science.

[2]  F. Holtz,et al.  Experiments on the Saturation of Fluorite in Magmatic Systems: Implications for Maximum F Concentration and Fluorine-Cation Bonding in Silicate Melt , 2020, Journal of Earth Science.

[3]  V. Galkin,et al.  Heat capacity, thermal expansion, and elastic parameters of pyrope , 2020, Journal of Thermal Analysis and Calorimetry.

[4]  Q. Zhang,et al.  Thermal stability and compressibility of bastnaesite , 2020, Physics and Chemistry of Minerals.

[5]  I. Stober,et al.  Interaction of Mantle Rocks with Crustal Fluids: Sagvandites of the Scandinavian Caledonides , 2019, Journal of Earth Science.

[6]  Xiaoxiang Xu,et al.  In-situ High-Temperature XRD and FTIR for Calcite, Dolomite and Magnesite: Anharmonic Contribution to the Thermodynamic Properties , 2019, Journal of Earth Science.

[7]  A. Pawley,et al.  Fluorine partitioning between humite-group minerals and aqueous fluids: implications for volatile storage in the upper mantle , 2019, Contributions to Mineralogy and Petrology.

[8]  Zengming Zhang,et al.  In-situ high-temperature vibrational spectra for synthetic and natural clinohumite: Implications for dense hydrous magnesium silicates in subduction zones , 2019, American Mineralogist.

[9]  T. Yoshino,et al.  Fluorine solubility in bridgmanite: A potential fluorine reservoir in the Earth's mantle , 2018, Earth and Planetary Science Letters.

[10]  K. Glazyrin,et al.  High-pressure single-crystal structural analysis of AlSiO3OH phase egg , 2018, American Mineralogist.

[11]  A. Shatskiy,et al.  Fate of water transported into the deep mantle by slab subduction , 2018, Journal of Asian Earth Sciences.

[12]  Xiang Wu,et al.  Elasticity and Anisotropy of the Pyrite-Type FeO2H-FeO2 System in Earth’s Lowermost Mantle , 2018, Journal of Earth Science.

[13]  V. Prakapenka,et al.  Phase stability and thermal equation of state of δ-AlOOH: Implication for water transportation to the Deep Lower Mantle , 2018, Earth and Planetary Science Letters.

[14]  A. Rohrbach,et al.  The effect of fluorine on the stability of wadsleyite: Implications for the nature and depths of the transition zone in the Earth's mantle , 2018 .

[15]  S. Speziale,et al.  Single crystal elasticity of natural topaz at high-temperatures , 2018, Scientific Reports.

[16]  T. Nakagawa On the numerical modeling of the deep mantle water cycle in global-scale mantle dynamics: The effects of the water solubility limit of lower mantle minerals , 2017, Journal of Earth Science.

[17]  G. Valdrè,et al.  Effects of fluorine content on the elastic behavior of topaz [Al2SiO4(F,OH)2] , 2017 .

[18]  V. Prakapenka,et al.  High Pressure Single Crystal Diffraction at PX^2 , 2017, Journal of visualized experiments : JoVE.

[19]  C. Manning,et al.  Implications for metal and volatile cycles from the pH of subduction zone fluids , 2016, Nature.

[20]  C. Magee,et al.  Fluorine partitioning between eclogitic garnet, clinopyroxene, and melt at upper mantle conditions , 2016 .

[21]  Liping Wang,et al.  Thermal equation of state of a natural kyanite up to 8.55 GPa and 1273 K , 2016 .

[22]  K. Hattori,et al.  Halogen (F, Cl, Br, I) behaviour in subducting slabs: a study of lawsonite blueschists in western Turkey , 2016 .

[23]  J. Tsuchiya,et al.  Crystal structure, equation of state, and elasticity of hydrous aluminosilicate phase, topaz-OH (Al2SiO4(OH)2) at high pressures , 2016 .

[24]  K. Marquardt,et al.  Experimental partitioning of F and Cl between olivine, orthopyroxene and silicate melt at Earth's mantle conditions , 2015 .

[25]  V. Prakapenka,et al.  DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration , 2015 .

[26]  D. Frost,et al.  Lower-mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate , 2015 .

[27]  R. Angel,et al.  EosFit7c and a Fortran module (library) for equation of state calculations , 2014 .

[28]  H. Liermann,et al.  Elastic behavior and pressure-induced structure evolution of topaz up to 45 GPa , 2014, Physics and Chemistry of Minerals.

[29]  J. Tsuchiya,et al.  Stability of hydrous silicate at high pressures and water transport to the deep lower mantle , 2014 .

[30]  S. Sinogeikin,et al.  BX90: a new diamond anvil cell design for X-ray diffraction and optical measurements. , 2012, The Review of scientific instruments.

[31]  M. Faccenda Water in the slab: A trilogy , 2012 .

[32]  A. Kirfel,et al.  Volume thermal expansion and related thermophysical parameters in the Mg, Fe olivine solid-solution series , 2012 .

[33]  S. Jacobsen,et al.  Crystal chemistry, thermal expansion, and Raman spectra of hydroxyl-clinohumite: implications for water in Earth’s interior , 2012, Contributions to Mineralogy and Petrology.

[34]  P. V. Keken,et al.  Recent contribution of sediments and fluids to the mantle’s volatile budget , 2012 .

[35]  D. Yuen,et al.  Melt evolution above a spontaneously retreating subducting slab in a three-dimensional model , 2011 .

[36]  D. Fan,et al.  A simple external resistance heating diamond anvil cell and its application for synchrotron radiation x-ray diffraction. , 2010, The Review of scientific instruments.

[37]  M. Gottschalk,et al.  The OH site in topaz: an IR spectroscopic investigation , 2010 .

[38]  S. Fukura,et al.  Change in compressibility of δ-AlOOH and δ-AlOOD at high pressure: A study of isotope effect and hydrogen-bond symmetrization , 2009 .

[39]  V. Prakapenka,et al.  The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source , 2008 .

[40]  W. G. Marshall,et al.  Pressure dependence of the hydrogen-bond geometry in topaz-OD from neutron powder diffraction , 2008 .

[41]  G. Shen,et al.  Toward an internally consistent pressure scale , 2007, Proceedings of the National Academy of Sciences.

[42]  R. Boehler New diamond cell for single-crystal x-ray diffraction , 2006 .

[43]  G. Gatta,et al.  Elastic behaviour and structural evolution of topaz at high pressure , 2006 .

[44]  Keisuke Nakayama,et al.  P - V - T equation of state of stishovite to the mantle transition zone conditions , 2005 .

[45]  S. Churakov,et al.  Ab-initio calculations of the proton location in topaz-OH, Al2SiO4(OH)2 , 2004 .

[46]  K. Komatsu,et al.  Effect of temperature and pressure on the crystal structure of topaz, Al2SiO4(OH, F)2 , 2003 .

[47]  T. Kikegawa,et al.  Thermal equation of state of omphacite , 2003 .

[48]  W. G. Marshall,et al.  High-pressure single-crystal X-ray and powder neutron study of F,OH/OD-chondrodite: Compressibility, structure, and hydrogen bonding , 2002 .

[49]  J. Shu,et al.  Hydroxyl-rich topaz in high-pressure and ultrahigh-pressure kyanite quartzites, with retrograde woodhouseite, from the Sulu terrane, eastern China , 2002 .

[50]  N. Ross,et al.  Compression of synthetic hydroxylclinohumite [Mg9Si4O16(OH)2] and hydroxylchondrodite [Mg5Si2O8(OH)2] , 2001 .

[51]  R. Angel Equations of State , 2000 .

[52]  R. Wirth,et al.  High-pressure synthesis and properties of OH-rich topaz , 1999 .

[53]  H. Schulz,et al.  High pressure single crystal X-ray diffraction study on a -quartz , 1999 .

[54]  S. Saxena,et al.  High-pressure and high-temperature in situ X-ray diffraction study of iron and corundum to 68 GPa using an internally heated diamond anvil cell , 1998 .

[55]  Tim Holland,et al.  Unit cell refinement from powder diffraction data: the use of regression diagnostics , 1997, Mineralogical Magazine.

[56]  W. McDonough,et al.  The composition of the Earth , 1995 .

[57]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .