Neural network embedding of the over-dispersed Poisson reserving model
暂无分享,去创建一个
[1] George Cybenko,et al. Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..
[2] Andrea Gabrielli,et al. A Neural Network Boosted Double Over-Dispersed Poisson Claims Reserving Model , 2019, SSRN Electronic Journal.
[3] Sergey Ioffe,et al. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.
[4] Geoffrey E. Hinton,et al. Learning representations by back-propagating errors , 1986, Nature.
[5] Geoffrey E. Hinton,et al. Deep Learning , 2015, Nature.
[6] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[7] Yoshua Bengio,et al. A Neural Probabilistic Language Model , 2003, J. Mach. Learn. Res..
[8] Mario V. Wuthrich,et al. Stochastic Claims Reserving Manual: Advances in Dynamic Modeling , 2015 .
[9] Jürgen Schmidhuber,et al. Deep learning in neural networks: An overview , 2014, Neural Networks.
[10] P. England,et al. Analytic and bootstrap estimates of prediction errors in claims reserving , 1999 .
[11] Eric R. Ziegel,et al. Generalized Linear Models , 2002, Technometrics.
[12] M. Wüthrich,et al. An Individual Claims History Simulation Machine , 2018 .
[13] Alois Gisler,et al. Credibility for the Chain Ladder Reserving Method , 2008 .
[14] Guangyuan Gao,et al. Bayesian Chain Ladder Models , 2018 .
[15] T. Mack. Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates , 1993, ASTIN Bulletin.
[16] Andrea Gabrielli,et al. An Individual Claims History Simulation Machine , 2018 .
[17] L. Rüschendorf,et al. COMPLETENESS IN LOCATION FAMILIES , 2008 .
[18] Kurt Hornik,et al. Multilayer feedforward networks are universal approximators , 1989, Neural Networks.
[19] Ronald Richman,et al. AI in Actuarial Science , 2018 .
[20] P. England,et al. Stochastic Claims Reserving in General Insurance , 2002, British Actuarial Journal.
[21] Erhard Kremer. Einführung in die Versicherungsmathematik , 1985 .
[22] Mario V. Wuthrich,et al. A neural network extension of the Lee–Carter model to multiple populations , 2018, Annals of Actuarial Science.
[23] Guigang Zhang,et al. Deep Learning , 2016, Int. J. Semantic Comput..
[24] Nitish Srivastava,et al. Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..
[25] Thomas Mack,et al. A Simple Parametric Model for Rating Automobile Insurance or Estimating IBNR Claims Reserves , 1991, ASTIN Bulletin.
[26] Michael Merz,et al. EDITORIAL: YES, WE CANN! , 2018, ASTIN Bulletin.
[27] Richard Verrall,et al. A Stochastic Model Underlying the Chain-Ladder Technique , 1998, British Actuarial Journal.