Morphological investigations of disaccharide molecules for growth inhibition of ice crystals

[1]  A. Chan,et al.  Osmotic tolerance and membrane permeability characteristics of rhesus monkey (Macaca mulatta) spermatozoa. , 2005, Cryobiology.

[2]  P. Bordat,et al.  How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations. , 2005, The journal of physical chemistry. B.

[3]  M. Patra,et al.  Structural effects of small molecules on phospholipid bilayers investigated by molecular simulations , 2004, physics/0407083.

[4]  Juan J de Pablo,et al.  Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides. , 2003, Biophysical journal.

[5]  T. Sei,et al.  Growth rate and morphology of ice crystals growing in a solution of trehalose and water , 2002 .

[6]  T. Furuki Effect of molecular structure on thermodynamic properties of carbohydrates. A calorimetric study of aqueous di- and oligosaccharides at subzero temperatures. , 2002, Carbohydrate research.

[7]  Y. Inoue,et al.  FTIR Study of the Properties of Anhydrous form II of Trehalose , 2001 .

[8]  S. Magazù,et al.  Anomalous cryoprotective effectiveness of trehalose: Raman scattering evidences , 1999 .

[9]  Y. Tominaga,et al.  Dynamical structure of water in aqueous solutions of D‐glucose and D‐galactose by low‐frequency Raman scattering , 1994 .

[10]  B. Spargo,et al.  Interactions of sugars with membranes. , 1988, Biochimica et biophysica acta.

[11]  L. Slade,et al.  Principles of cryostabilization technology from structure property relationships of carbohydrate water systems a review , 1988 .

[12]  T. Taga,et al.  The crystal and molecular structure of trehalose dihydrate , 1972 .

[13]  Neville H Fletcher,et al.  The Chemical Physics of Ice , 1970 .

[14]  J. Israelachvili Intermolecular and surface forces , 1985 .