Model Evaluation and Selection

[1]  M. Lee,et al.  Bayesian Cognitive Modeling: A Practical Course , 2014 .

[2]  Michael D. Lee,et al.  A Survey of Model Evaluation Approaches With a Tutorial on Hierarchical Bayesian Methods , 2008, Cogn. Sci..

[3]  J. Kiefer Optimum Experimental Designs , 1959 .

[4]  Daniel R. Cavagnaro,et al.  Discriminating among probability weighting functions using adaptive design optimization , 2013, Journal of risk and uncertainty.

[5]  Jay I. Myung,et al.  Minimum description length model selection of multinomial processing tree models , 2010, Psychonomic bulletin & review.

[6]  J. Wixted,et al.  On the Form of Forgetting , 1991 .

[7]  Jay I. Myung,et al.  Model selection by Normalized Maximum Likelihood , 2006 .

[8]  Michael D. Lee,et al.  Optimal experimental design for a class of bandit problems , 2010 .

[9]  Andrea Stocco,et al.  The cognitive modeling of human behavior: Why a model is (sometimes) better than 10,000 words , 2007, Cognitive Systems Research.

[10]  Amy Wenzel,et al.  One hundred years of forgetting: A quantitative description of retention , 1996 .

[11]  Peter Grünwald,et al.  Accumulative prediction error and the selection of time series models , 2006 .

[12]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[13]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[14]  Tom Lodewyckx,et al.  Bayesian Versus Frequentist Inference , 2008 .

[15]  I. J. Myung,et al.  Applying Occam’s razor in modeling cognition: A Bayesian approach , 1997 .

[16]  Browne,et al.  Cross-Validation Methods. , 2000, Journal of mathematical psychology.

[17]  Vijay Balasubramanian,et al.  Statistical Inference, Occam's Razor, and Statistical Mechanics on the Space of Probability Distributions , 1996, Neural Computation.

[18]  A. Atkinson,et al.  Optimal design : Experiments for discriminating between several models , 1975 .

[19]  Jorma Rissanen,et al.  Fisher information and stochastic complexity , 1996, IEEE Trans. Inf. Theory.

[20]  Walter Zucchini,et al.  Model Selection , 2011, International Encyclopedia of Statistical Science.

[21]  K. C. Klauer,et al.  The flexibility of models of recognition memory: An analysis by the minimum-description length principle , 2011 .

[22]  Mark A. Pitt,et al.  Toward a method of selecting among computational models of cognition. , 2002 .

[23]  Peter Grünwald,et al.  A tutorial introduction to the minimum description length principle , 2004, ArXiv.

[24]  Jay I. Myung,et al.  Model discrimination through adaptive experimentation , 2011, Psychonomic bulletin & review.

[25]  M. Schervish Theory of Statistics , 1995 .

[26]  J. V. Santen,et al.  How many parameters can a model have and still be testable , 1985 .

[27]  Jorma Rissanen,et al.  Strong optimality of the normalized ML models as universal codes and information in data , 2001, IEEE Trans. Inf. Theory.

[28]  Jay I. Myung,et al.  Optimal experimental design for model discrimination. , 2009, Psychological review.

[29]  Mark A. Pitt,et al.  Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach , 2013, Manag. Sci..

[30]  Jay I. Myung,et al.  A Tutorial on Adaptive Design Optimization. , 2013, Journal of mathematical psychology.

[31]  Simon Farrell,et al.  Computational Modeling in Cognition: Principles and Practice , 2010 .

[32]  Henrik Singmann,et al.  MPTinR: Analysis of multinomial processing tree models in R , 2013, Behavior research methods.

[33]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[34]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[35]  Roger Ratcliff,et al.  Assessing model mimicry using the parametric bootstrap , 2004 .

[36]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[37]  S. James Press Hierarchical Bayesian Modeling , 2010 .

[38]  James L. McClelland The Place of Modeling in Cognitive Science , 2009, Top. Cogn. Sci..

[39]  Jay I. Myung,et al.  Evaluation and comparison of computational models. , 2009, Methods in enzymology.

[40]  I. J. Myung,et al.  When a good fit can be bad , 2002, Trends in Cognitive Sciences.

[41]  Richard M. Shiffrin,et al.  The art of model development and testing , 1997 .

[42]  Mark A. Pitt,et al.  Advances in Minimum Description Length: Theory and Applications , 2005 .

[43]  P. Müller,et al.  Optimal Bayesian Design by Inhomogeneous Markov Chain Simulation , 2004 .

[44]  Jay I. Myung,et al.  Assessing the distinguishability of models and the informativeness of data , 2004, Cognitive Psychology.

[45]  Bamber,et al.  How to Assess a Model's Testability and Identifiability. , 2000, Journal of mathematical psychology.

[46]  Christian P. Robert,et al.  Bayesian-Optimal Design via Interacting Particle Systems , 2006 .

[47]  Mark A. Pitt,et al.  Model Evaluation, Testing and Selection , 2005 .

[48]  Mark A. Pitt,et al.  Adaptive Design Optimization: A Mutual Information-Based Approach to Model Discrimination in Cognitive Science , 2010, Neural Computation.

[49]  P. Grünwald The Minimum Description Length Principle (Adaptive Computation and Machine Learning) , 2007 .

[50]  F. Y. Edgeworth,et al.  The theory of statistics , 1996 .

[51]  I. J. Myung,et al.  Tutorial on maximum likelihood estimation , 2003 .

[52]  Mark M. Meerschaert,et al.  Mathematical Modeling , 2014, Encyclopedia of Social Network Analysis and Mining.

[53]  Wasserman,et al.  Bayesian Model Selection and Model Averaging. , 2000, Journal of mathematical psychology.

[54]  W. Vanpaemel,et al.  Prior sensitivity in theory testing: An apologia for the Bayes factor , 2010 .

[55]  Jay I. Myung,et al.  Model Comparison Methods , 2004, Numerical Computer Methods, Part D.

[56]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.