Hyperspectral Unmixing Via Turbo Bilinear Approximate Message Passing

The goal of hyperspectral unmixing is to decompose an electromagnetic spectral dataset measured over M spectral bands and T pixels into N constituent material spectra (or “end-members”) with corresponding spatial abundances. In this paper, we propose a novel approach to hyperspectral unmixing based on loopy belief propagation (BP) that enables the exploitation of spectral coherence in the end-members and spatial coherence in the abundances. In particular, we partition the factor graph into spectral coherence, spatial coherence, and bilinear subgraphs, and pass messages between them using a “turbo” approach. To perform message passing within the bilinear subgraph, we employ the bilinear generalized approximate message passing algorithm (BiG-AMP), a recently proposed belief-propagation-based approach to matrix factorization. Furthermore, we propose an expectation-maximization (EM) strategy to tune the prior parameters and a model-order selection strategy to select the number of materials N. Numerical experiments conducted with both synthetic and real-world data show favorable unmixing performance relative to existing methods.

[1]  David W. Messinger,et al.  The SHARE 2012 data campaign , 2013, Defense, Security, and Sensing.

[2]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[3]  Xuelong Li,et al.  Manifold Regularized Sparse NMF for Hyperspectral Unmixing , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Philip Schniter,et al.  Compressive Imaging Using Approximate Message Passing and a Markov-Tree Prior , 2010, IEEE Transactions on Signal Processing.

[5]  Florent Krzakala,et al.  Variational free energies for compressed sensing , 2014, 2014 IEEE International Symposium on Information Theory.

[6]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[7]  Nicolas Gillis,et al.  Hierarchical Clustering of Hyperspectral Images Using Rank-Two Nonnegative Matrix Factorization , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Philip Schniter,et al.  Turbo reconstruction of structured sparse signals , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[9]  Jun Zhou,et al.  Hyperspectral Unmixing via $L_{1/2}$ Sparsity-Constrained Nonnegative Matrix Factorization , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[10]  José M. Bioucas-Dias,et al.  Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[12]  Rob Heylen,et al.  Fully Constrained Least Squares Spectral Unmixing by Simplex Projection , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Sundeep Rangan,et al.  Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[14]  Sen Jia,et al.  Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[15]  José M. Bioucas-Dias,et al.  Collaborative sparse regression using spatially correlated supports - Application to hyperspectral unmixing , 2014, IEEE Transactions on Image Processing.

[16]  Alfred O. Hero,et al.  Nonlinear Unmixing of Hyperspectral Images: Models and Algorithms , 2013, IEEE Signal Processing Magazine.

[17]  José M. Bioucas-Dias,et al.  Minimum Volume Simplex Analysis: A Fast Algorithm to Unmix Hyperspectral Data , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[18]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[19]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[20]  Philip Schniter,et al.  Hyperspectral image unmixing via bilinear generalized approximate message passing , 2013, Defense, Security, and Sensing.

[21]  Volkan Cevher,et al.  Bilinear Generalized Approximate Message Passing—Part I: Derivation , 2013, IEEE Transactions on Signal Processing.

[22]  W. Marsden I and J , 2012 .

[23]  Andrea Montanari,et al.  Message passing algorithms for compressed sensing: I. motivation and construction , 2009, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[24]  Philip Schniter,et al.  Submitted to Ieee Transactions on Signal Processing 1 a Factor Graph Approach to Joint Ofdm Channel Estimation and Decoding in Impulsive Noise Environments , 2022 .

[25]  Philip Schniter,et al.  An Empirical-Bayes Approach to Recovering Linearly Constrained Non-Negative Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[26]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[27]  Alfred O. Hero,et al.  A Survey of Stochastic Simulation and Optimization Methods in Signal Processing , 2015, IEEE Journal of Selected Topics in Signal Processing.

[28]  Antonio J. Plaza,et al.  Sparse Unmixing of Hyperspectral Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Stan Z. Li,et al.  Markov Random Field Modeling in Image Analysis , 2001, Computer Science Workbench.

[30]  Chein-I Chang,et al.  Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[31]  Sanjeev Arora,et al.  Computing a nonnegative matrix factorization -- provably , 2011, STOC '12.

[32]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[33]  Philip Schniter,et al.  Expectation-Maximization Gaussian-Mixture Approximate Message Passing , 2012, IEEE Transactions on Signal Processing.

[34]  Hao Wu,et al.  Double Constrained NMF for Hyperspectral Unmixing , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Alfred O. Hero,et al.  Hyperspectral Image Unmixing Using a Multiresolution Sticky HDP , 2012, IEEE Transactions on Signal Processing.

[36]  Wei Xia,et al.  An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Bradley Efron,et al.  Large-scale inference , 2010 .

[38]  Nicolas Gillis,et al.  Fast and Robust Recursive Algorithmsfor Separable Nonnegative Matrix Factorization , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Paul E. Johnson,et al.  A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures , 1983 .

[40]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, ISIT.

[41]  Paul D. Gader,et al.  A Review of Nonlinear Hyperspectral Unmixing Methods , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[42]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[43]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[44]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[45]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.

[46]  Philip Schniter,et al.  Dynamic Compressive Sensing of Time-Varying Signals Via Approximate Message Passing , 2012, IEEE Transactions on Signal Processing.

[47]  Volkan Cevher,et al.  Bilinear Generalized Approximate Message Passing—Part II: Applications , 2014, IEEE Transactions on Signal Processing.

[48]  Antonio J. Plaza,et al.  Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[49]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[50]  Philip Schniter,et al.  Approximate Message Passing for Recovery of Sparse Signals with Markov-Random-Field Support Structure , 2011 .

[51]  Chein-I Chang,et al.  Estimation of number of spectrally distinct signal sources in hyperspectral imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Alfred O. Hero,et al.  Joint Bayesian Endmember Extraction and Linear Unmixing for Hyperspectral Imagery , 2009, IEEE Transactions on Signal Processing.

[53]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Michael P. Hobson,et al.  IEEE Transactions on Computational Imaging , 2017 .

[55]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[56]  Volkan Cevher,et al.  Fixed Points of Generalized Approximate Message Passing With Arbitrary Matrices , 2016, IEEE Transactions on Information Theory.

[57]  Philip Schniter,et al.  A Message-Passing Receiver for BICM-OFDM Over Unknown Clustered-Sparse Channels , 2011, IEEE Journal of Selected Topics in Signal Processing.

[58]  Xiaoqiang Lu,et al.  Substance Dependence Constrained Sparse NMF for Hyperspectral Unmixing , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[59]  Chong-Yung Chi,et al.  A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing , 2009, IEEE Transactions on Signal Processing.

[60]  C. Bouman Markov Random Fields and Stochastic Image Models , 1995 .

[61]  Isaac Dialsingh,et al.  Large-scale inference: empirical Bayes methods for estimation, testing, and prediction , 2012 .

[62]  Alfred O. Hero,et al.  Tutorial on Stochastic Simulation and Optimization Methods in Signal Processing , 2015, ArXiv.

[63]  Christian P. Robert,et al.  Large-scale inference , 2010 .

[64]  John P. Kerekes,et al.  SHARE 2012: large edge targets for hyperspectral imaging applications , 2013, Defense, Security, and Sensing.

[65]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[66]  Victoria Stodden,et al.  When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts? , 2003, NIPS.