A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis

[1]  Douglas N. Greve,et al.  A Longitudinal Method for Simultaneous Whole-Brain and Lesion Segmentation in Multiple Sclerosis , 2020, MLCN/RNO-AI@MICCAI.

[2]  C. Adams,et al.  A Mendelian randomization study of telomere length and blood-cell traits , 2020, Scientific Reports.

[3]  William R. Gray Roncal,et al.  Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis , 2020, Scientific Reports.

[4]  Richard McKinley,et al.  Simultaneous lesion and neuroanatomy segmentation in Multiple Sclerosis using deep neural networks , 2019, ArXiv.

[5]  Antonios Danelakis,et al.  Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging , 2018, Comput. Medical Imaging Graph..

[6]  Martin Styner,et al.  Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure , 2018, bioRxiv.

[7]  Joaquim Salvi,et al.  One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks , 2018, NeuroImage: Clinical.

[8]  D. Pelletier,et al.  Thalamic atrophy in multiple sclerosis: A magnetic resonance imaging marker of neurodegeneration throughout disease , 2018, Annals of neurology.

[9]  David H. Miller,et al.  Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria , 2017, The Lancet Neurology.

[10]  Snehashis Roy,et al.  Longitudinal multiple sclerosis lesion segmentation: Resource and challenge , 2017, NeuroImage.

[11]  Alex Rovira,et al.  Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach , 2017, NeuroImage.

[12]  Koenraad Van Leemput,et al.  Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling , 2016, NeuroImage.

[13]  Ludovica Griffanti,et al.  BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities , 2016, NeuroImage.

[14]  Saurabh Jain,et al.  Reliable measurements of brain atrophy in individual patients with multiple sclerosis , 2016, Brain and behavior.

[15]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[16]  D. Ramasamy,et al.  A serial 10-year follow-up study of brain atrophy and disability progression in RRMS patients , 2016, Multiple sclerosis.

[17]  A. Traboulsee,et al.  FLAIR2: A Combination of FLAIR and T2 for Improved MS Lesion Detection , 2016, American Journal of Neuroradiology.

[18]  P. Lundberg,et al.  Quantitative MRI for Analysis of Active Multiple Sclerosis Lesions without Gadolinium-Based Contrast Agent , 2016, American Journal of Neuroradiology.

[19]  Koenraad Van Leemput,et al.  Simultaneous Whole-Brain Segmentation and White Matter Lesion Detection Using Contrast-Adaptive Probabilistic Models , 2015, Brainles@MICCAI.

[20]  S Hannoun,et al.  OFSEP, a nationwide cohort of people with multiple sclerosis: Consensus minimal MRI protocol. , 2015, Journal of neuroradiology. Journal de neuroradiologie.

[21]  Saurabh Jain,et al.  Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images , 2015, NeuroImage: Clinical.

[22]  Sébastien Ourselin,et al.  Bayesian Model Selection for Pathological Neuroimaging Data Applied to White Matter Lesion Segmentation , 2015, IEEE Transactions on Medical Imaging.

[23]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[24]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[25]  R. Parkkola,et al.  In Vivo Detection of Diffuse Inflammation in Secondary Progressive Multiple Sclerosis Using PET Imaging and the Radioligand 11C-PK11195 , 2014, The Journal of Nuclear Medicine.

[26]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[27]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[28]  M. Sormani,et al.  MRI lesions as a surrogate for relapses in multiple sclerosis: a meta-analysis of randomised trials , 2013, The Lancet Neurology.

[29]  Christine C. Boucard,et al.  White-matter lesions drive deep gray-matter atrophy in early multiple sclerosis: support from structural MRI , 2013, Multiple sclerosis.

[30]  Kathleen F Villa,et al.  The cost burden of multiple sclerosis in the United States: a systematic review of the literature , 2013, Journal of medical economics.

[31]  F. Fazekas,et al.  Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis , 2012, Journal of Neurology.

[32]  Massimiliano Calabrese,et al.  Measurement and clinical effect of grey matter pathology in multiple sclerosis , 2012, The Lancet Neurology.

[33]  Mark Jenkinson,et al.  The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis , 2012, Human brain mapping.

[34]  R Bakshi,et al.  The Impact of Lesion In-Painting and Registration Methods on Voxel-Based Morphometry in Detecting Regional Cerebral Gray Matter Atrophy in Multiple Sclerosis , 2012, American Journal of Neuroradiology.

[35]  M. Battaglini,et al.  Evaluating and reducing the impact of white matter lesions on brain volume measurements , 2012, Human brain mapping.

[36]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[37]  Bernhard Hemmer,et al.  An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis , 2012, NeuroImage.

[38]  D. Louis Collins,et al.  Trimmed-Likelihood Estimation for Focal Lesions and Tissue Segmentation in Multisequence MRI for Multiple Sclerosis , 2011, IEEE Transactions on Medical Imaging.

[39]  David H. Miller,et al.  Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes , 2010, Journal of magnetic resonance imaging : JMRI.

[40]  L. Kappos,et al.  MR Imaging in Multiple Sclerosis: Review and Recommendations for Current Practice , 2010, American Journal of Neuroradiology.

[41]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[42]  Peter A. Calabresi,et al.  A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions , 2010, NeuroImage.

[43]  Jundong Liu,et al.  Automatic Multiple Sclerosis detection based on integrated square estimation , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[44]  Koen Van Leemput,et al.  Encoding Probabilistic Brain Atlases Using Bayesian Inference , 2009, IEEE Transactions on Medical Imaging.

[45]  David H. Miller,et al.  Imaging outcomes for neuroprotection and repair in multiple sclerosis trials , 2009, Nature Reviews Neurology.

[46]  M. Sdika,et al.  Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping , 2009, Human brain mapping.

[47]  Kunio Nakamura,et al.  Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients , 2009, NeuroImage.

[48]  B. Ginneken,et al.  3D Segmentation in the Clinic: A Grand Challenge , 2007 .

[49]  Pierre-Louis Bazin,et al.  Homeomorphic brain image segmentation with topological and statistical atlases , 2008, Medical Image Anal..

[50]  G. Gerig,et al.  Automatic MS Lesion Segmentation by Outlier Detection and Information Theoretic Region Partitioning , 2008, The MIDAS Journal.

[51]  Rohit Bakshi,et al.  MRI in multiple sclerosis: current status and future prospects , 2008, The Lancet Neurology.

[52]  Christophe Collet,et al.  Lesions detection on 3D brain MRI using trimmmed likelihood estimator and probabilistic atlas , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[53]  Jean-Paul Armspach,et al.  An a contrario approach for outliers segmentation: Application to Multiple Sclerosis in MRI , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[54]  C R G Guttmann,et al.  Thalamic atrophy and cognition in multiple sclerosis , 2007, Neurology.

[55]  J S Wolinsky,et al.  EFNS guidelines on the use of neuroimaging in the management of multiple sclerosis , 2006, European journal of neurology.

[56]  Roberto Mutani,et al.  Grey Matter Pathology in Multiple Sclerosis , 2005, Journal of neuropathology and experimental neurology.

[57]  Pierre Hellier,et al.  STREM: A Robust Multidimensional Parametric Method to Segment MS Lesions in MRI , 2005, MICCAI.

[58]  Stephen M. Smith,et al.  Accurate, Robust, and Automated Longitudinal and Cross-Sectional Brain Change Analysis , 2002, NeuroImage.

[59]  A J Thompson,et al.  Brain atrophy in clinically early relapsing-remitting multiple sclerosis. , 2002, Brain : a journal of neurology.

[60]  D N Firmin,et al.  Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. , 2001, European heart journal.

[61]  Koenraad Van Leemput,et al.  Automated segmentation of multiple sclerosis lesions by model outlier detection , 2001, IEEE Transactions on Medical Imaging.

[62]  G. Rosati,et al.  The prevalence of multiple sclerosis in the world: an update , 2001, Neurological Sciences.

[63]  Karl J. Friston,et al.  Image registration using a symmetric prior—in three dimensions , 1999, Human brain mapping.

[64]  Koenraad Van Leemput,et al.  Automated model-based bias field correction of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[65]  R. Kikinis,et al.  Quantitative follow‐up of patients with multiple sclerosis using MRI: Technical aspects , 1999, Journal of magnetic resonance imaging : JMRI.

[66]  R. Killiany,et al.  Quantitative follow‐up of patients with multiple sclerosis using MRI: Reproducibility , 1999, Journal of magnetic resonance imaging : JMRI.

[67]  Alan C. Evans,et al.  Automatic Quantification of MS Lesions in 3D MRI Brain Data Sets: Validation of INSECT , 1998, MICCAI.

[68]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[69]  T W Redpath,et al.  Technical note: use of a double inversion recovery pulse sequence to image selectively grey or white brain matter. , 1994, The British journal of radiology.

[70]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[71]  T. Fog,et al.  [Multiple sclerosis; review]. , 1954, Maanedsskrift for praktisk laegegerning og social Medicin.

[72]  Mauricio Reyes,et al.  Robustness of Simultaneous Lesion and Neuroanatomy Segmentation in Multiple Sclerosis Using Deep Neural Networks , 2020 .

[73]  D. Louis Collins,et al.  Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging , 2013, Medical Image Anal..

[74]  Daniel Rueckert,et al.  Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part II , 2017, Lecture Notes in Computer Science.

[75]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.