暂无分享,去创建一个
Rémi Abgrall | Philipp Öffner | Hendrik Ranocha | R. Abgrall | Hendrik Ranocha | Philipp Öffner | P. Öffner
[1] Rémi Abgrall,et al. A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes , 2017, J. Comput. Phys..
[2] Hendrik Ranocha,et al. Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods , 2016, GEM - International Journal on Geomathematics.
[3] Gregor Gassner,et al. An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part I: Theory and numerical verification , 2018, J. Comput. Phys..
[4] R. Abgrall,et al. High Order Schemes for Hyperbolic Problems Using Globally Continuous Approximation and Avoiding Mass Matrices , 2017, J. Sci. Comput..
[5] Rémi Abgrall,et al. Explicit Runge-Kutta residual distribution schemes for time dependent problems: Second order case , 2010, J. Comput. Phys..
[6] Matteo Parsani,et al. Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics , 2016 .
[7] Gregor Gassner,et al. Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations , 2016, J. Comput. Phys..
[8] David I. Ketcheson,et al. Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..
[9] Philipp Öffner,et al. L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} Stability of Explicit Runge–Kutta Schemes , 2017, Journal of Scientific Computing.
[10] Gregor Gassner,et al. An Entropy Stable h / p Non-Conforming Discontinuous Galerkin Method with the Summation-by-Parts Property , 2017, J. Sci. Comput..
[11] Björn Sjögreen,et al. High order entropy conservative central schemes for wide ranges of compressible gas dynamics and MHD flows , 2018, J. Comput. Phys..
[12] P. Heinisch,et al. Numerical Methods for the Magnetic Induction Equation with Hall Effect and Projections onto Divergence-Free Vector Fields , 2018, 1810.01397.
[13] Gregor Gassner,et al. A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods , 2013, SIAM J. Sci. Comput..
[14] Lorenz T. Biegler,et al. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..
[15] Travis C. Fisher,et al. High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains , 2013, J. Comput. Phys..
[16] David C. Del Rey Fernández,et al. Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations , 2014 .
[17] Jason E. Hicken,et al. A Family of Entropy-Conservative Flux Functions for the Euler Equations , 2018, 1807.03832.
[18] David C. Del Rey Fernández,et al. A generalized framework for nodal first derivative summation-by-parts operators , 2014, J. Comput. Phys..
[19] Gregor Gassner,et al. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry , 2015, J. Comput. Phys..
[20] Lisandro Dalcin,et al. Relaxation Runge-Kutta Methods: Fully-Discrete Explicit Entropy-Stable Schemes for the Euler and Navier-Stokes Equations , 2019, 1905.09129.
[21] Jesse Chan,et al. On discretely entropy conservative and entropy stable discontinuous Galerkin methods , 2017, J. Comput. Phys..
[22] Hendrik Ranocha,et al. On strong stability of explicit Runge–Kutta methods for nonlinear semibounded operators , 2018, IMA Journal of Numerical Analysis.
[23] David I. Ketcheson,et al. Relaxation Runge-Kutta Methods: Conservation and Stability for Inner-Product Norms , 2019, SIAM J. Numer. Anal..
[24] N. Ron-Ho,et al. A Multiple-Grid Scheme for Solving the Euler Equations , 1982 .
[25] Iain Dunning,et al. JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..
[26] Eitan Tadmor,et al. The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .
[27] E. Tadmor. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.
[28] H. Freistühler. C.M. Dafermos: “Hyperbolic Conservation Laws in Continuum Physics” , 2018, Jahresbericht der Deutschen Mathematiker-Vereinigung.
[29] Gregor Gassner,et al. Conservative and Stable Degree Preserving SBP Operators for Non-conforming Meshes , 2016, Journal of Scientific Computing.
[30] Rémi Abgrall,et al. High Order Fluctuation Schemes on Triangular Meshes , 2003, J. Sci. Comput..
[31] Magnus Svärd,et al. Review of summation-by-parts schemes for initial-boundary-value problems , 2013, J. Comput. Phys..
[32] Gregor Gassner,et al. Entropy Stable Space–Time Discontinuous Galerkin Schemes with Summation-by-Parts Property for Hyperbolic Conservation Laws , 2018, J. Sci. Comput..
[33] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[34] Lisandro Dalcin,et al. Relaxation Runge-Kutta Methods: Fully Discrete Explicit Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations , 2019, SIAM J. Sci. Comput..
[35] Sergio Pirozzoli,et al. Numerical Methods for High-Speed Flows , 2011 .
[36] Remi Abgrall,et al. A high-order nonconservative approach for hyperbolic equations in fluid dynamics , 2017, Computers & Fluids.
[37] Rémi Abgrall,et al. Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes , 2011, J. Comput. Phys..