On the convergence of finite state mean-field games through Γ-convergence

Abstract In this study, we consider the long-term convergence (trend toward an equilibrium) of finite state mean-field games using Γ -convergence. Our techniques are based on the observation that an important class of mean-field games can be viewed as the Euler–Lagrange equation of a suitable functional. Therefore, using a scaling argument, one can convert a long-term convergence problem into a Γ -convergence problem. Our results generalize previous results related to long-term convergence for finite state problems.

[1]  Pierre-Louis Lions,et al.  Long time average of mean field games , 2012, Networks Heterog. Media.

[2]  I. Fonseca,et al.  Modern Methods in the Calculus of Variations: L^p Spaces , 2007 .

[3]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[4]  Diogo A. Gomes,et al.  A stochastic Evans-Aronsson problem , 2013 .

[5]  Olivier Guéant From infinity to one: The reduction of some mean field games to a global control problem , 2011, 1110.3441.

[6]  Olivier Guéant,et al.  Mean Field Games and Oil Production , 2010 .

[7]  P. Lions,et al.  Mean field games , 2007 .

[8]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[9]  D. Gomes,et al.  Discrete Time, Finite State Space Mean Field Games , 2010 .

[10]  D. Gomes,et al.  Continuous Time Finite State Mean Field Games , 2012, 1203.3173.

[11]  Olivier Guéant,et al.  Application of Mean Field Games to Growth Theory , 2008 .

[12]  Peter E. Caines,et al.  Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , 2006, Commun. Inf. Syst..

[13]  Andrea Braides Γ-convergence for beginners , 2002 .

[14]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[15]  Olivier Guéant Existence and Uniqueness Result for Mean Field Games with Congestion Effect on Graphs , 2011, 1110.3442.

[16]  Diogo A. Gomes,et al.  A-priori estimates for stationary mean-field games , 2012, Networks Heterog. Media.

[17]  A. Lachapelle,et al.  COMPUTATION OF MEAN FIELD EQUILIBRIA IN ECONOMICS , 2010 .

[18]  Minyi Huang,et al.  Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria , 2007, IEEE Transactions on Automatic Control.