Unconditional long-time stability of a velocity–vorticity method for the 2D Navier–Stokes equations

We prove unconditional long-time stability for a particular velocity–vorticity discretization of the 2D Navier–Stokes equations. The scheme begins with a formulation that uses the Lamb vector to couple the usual velocity–pressure system to the vorticity dynamics equation, and then discretizes with the finite element method in space and implicit–explicit BDF2 in time, with the vorticity equation decoupling at each time step. We prove the method’s vorticity and velocity are both long-time stable in the $$L^2$$L2 and $$H^1$$H1 norms, without any timestep restriction. Moreover, our analysis avoids the use of Gronwall-type estimates, which leads us to stability bounds with only polynomial (instead of exponential) dependence on the Reynolds number. Numerical experiments are given that demonstrate the effectiveness of the method.

[1]  Arun K. Saha,et al.  Direct Numerical Simulation of Two-Dimensional Flow past a Normal Flat Plate , 2013 .

[2]  Claes Johnson,et al.  Numerics and hydrodynamic stability: toward error control in computational fluid dynamics , 1995 .

[3]  Arun K. Saha,et al.  Far-wake characteristics of two-dimensional flow past a normal flat plate , 2007 .

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[6]  Rolf Rannacher,et al.  On the finite element approximation of the nonstationary Navier-Stokes problem , 1980 .

[7]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[8]  Maxim A. Olshanskii,et al.  Velocity-vorticity-helicity formulation and a solver for the Navier-Stokes equations , 2010, J. Comput. Phys..

[9]  Rickard Bensow,et al.  Residual based VMS subgrid modeling for vortex flows , 2010 .

[10]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[11]  Francisco Guillén-González,et al.  Unconditional stability and convergence of fully discrete schemes for 2D viscous fluids models with mass diffusion , 2008, Math. Comput..

[12]  Xiaoming Wang,et al.  Long Time Stability of a Classical Efficient Scheme for Two-dimensional Navier-Stokes Equations , 2011, SIAM J. Numer. Anal..

[13]  C. E. Wayne,et al.  Invariant Manifolds and the Long-Time Asymptotics of the Navier-Stokes and Vorticity Equations on R2 , 2001 .

[14]  Xiaoming Wang,et al.  An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier–Stokes equations , 2011, Numerische Mathematik.

[15]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[16]  Santiago Badia,et al.  Long-Term Stability Estimates and Existence of a Global Attractor in a Finite Element Approximation of the Navier-Stokes Equations with Numerical Subgrid Scale Modeling , 2010, SIAM J. Numer. Anal..

[17]  Thomas B. Gatski,et al.  Review of incompressible fluid flow computations using the vorticity-velocity formulation , 1991 .

[18]  J. C. Simo,et al.  Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations , 1994 .

[19]  MAX GUNZBURGER,et al.  EFFICIENT AND LONG-TIME ACCURATE SECOND-ORDER METHODS FOR STOKES-DARCY SYSTEMS , 2012 .

[20]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[21]  Surya Pratap Vanka,et al.  Simulations of the unsteady separated flow past a normal flat plate , 1995 .

[22]  E. Koschmieder Taylor vortices between eccentric cylinders , 1976 .

[23]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .

[24]  Florentina Tone,et al.  On the Long-Time Stability of the Implicit Euler Scheme for the Two-Dimensional Navier-Stokes Equations , 2006, SIAM J. Numer. Anal..

[25]  Volker John,et al.  Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder , 2004 .

[26]  Maxim A. Olshanskii,et al.  Natural vorticity boundary conditions on solid walls , 2015 .

[27]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[28]  Maxim A. Olshanskii,et al.  On Error Analysis for the 3D Navier-Stokes Equations in Velocity-Vorticity-Helicity Form , 2011, SIAM J. Numer. Anal..

[29]  R. Temam,et al.  Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .

[30]  F. Tone On the long‐time stability of the Crank–Nicolson scheme for the 2D Navier–Stokes equations , 2007 .