Visualizing the impact of space-time uncertainties on dengue fever patterns

In this article, we evaluate the impact of positional and temporal inaccuracies on the mapping and detection of potential outbreaks of dengue fever in Cali, an urban environment of Colombia. Positional uncertainties in input data are determined by comparison between coordinates following an automated geocoding process and those extracted from on-field GPS measurements. Temporal uncertainties are modeled around the incubation period for dengue fever. To test the robustness of disease intensities in space and time when accounting for the potential space-time error, each dengue case is perturbed using Monte Carlo simulations. A space-time kernel density estimation (STKDE) is conducted on both perturbed and observed sets of dengue cases. To reduce the computational effort, we use a parallel spatial computing solution. The results are visualized in a 3D framework, which facilitates the discovery of new, significant space-time patterns and shapes of dengue outbreaks while enhancing our understanding of complex and uncertain dynamics of vector-borne diseases.

[1]  Marc P. Armstrong,et al.  DOMAIN DECOMPOSITION FOR PARALLEL PROCESSING OF SPATIAL PROBLEMS , 1992 .

[2]  P Reiter,et al.  Exploratory space-time analysis of reported dengue cases during an outbreak in Florida, Puerto Rico, 1991-1992. , 1998, The American journal of tropical medicine and hygiene.

[3]  G. Jacquez A research agenda: does geocoding positional error matter in health GIS studies? , 2012, Spatial and spatio-temporal epidemiology.

[4]  Michael F. Goodchild,et al.  A parallel computing approach to fast geostatistical areal interpolation , 2011, Int. J. Geogr. Inf. Sci..

[5]  Michael J. Widener,et al.  Developing a parallel computational implementation of AMOEBA , 2012, Int. J. Geogr. Inf. Sci..

[6]  Marc P. Armstrong,et al.  Geography and Computational Science , 2000 .

[7]  U. Kitron,et al.  Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. , 1998, Journal of medical entomology.

[8]  Dale L Zimmerman,et al.  The effects of local street network characteristics on the positional accuracy of automated geocoding for geographic health studies , 2010, International journal of health geographics.

[9]  Daniel Atkins,et al.  Revolutionizing Science and Engineering Through Cyberinfrastructure: Report of the National Science Foundation Blue-Ribbon Advisory Panel on Cyberinfrastructure , 2003 .

[10]  David J. Unwin,et al.  GIS, spatial analysis and spatial statistics , 1996 .

[11]  Stefania Bertazzon,et al.  GIS and Public Health , 2014, ISPRS Int. J. Geo Inf..

[12]  M. Kulldorff,et al.  A Space–Time Permutation Scan Statistic for Disease Outbreak Detection , 2005, PLoS medicine.

[13]  Geoffrey M. Jacquez,et al.  Spatial Statistics When Locations Are Uncertain , 1999, Ann. GIS.

[14]  Colin Robertson,et al.  Review of software for space-time disease surveillance , 2010, International journal of health geographics.

[15]  Pavlos S. Kanaroglou,et al.  Effects of alternative point pattern geocoding procedures on first and second order statistical measures , 2008 .

[16]  Lalit Kumar,et al.  The importance of appropriate temporal and spatial scales for dengue fever control and management. , 2012, The Science of the total environment.

[17]  N. Levine Crime Mapping and the CrimeStat Program , 2006 .

[18]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[19]  M. Kwan The Uncertain Geographic Context Problem , 2012 .

[20]  Heidrun Schumann,et al.  Space, time and visual analytics , 2010, Int. J. Geogr. Inf. Sci..

[21]  M. Goodchild,et al.  Uncertainty in geographical information , 2002 .

[22]  Jinn-Guey Lay,et al.  Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. , 2009, The Science of the total environment.

[23]  Tomoki Nakaya,et al.  Visualising Crime Clusters in a Space‐time Cube: An Exploratory Data‐analysis Approach Using Space‐time Kernel Density Estimation and Scan Statistics , 2010, Trans. GIS.

[24]  David J. Unwin,et al.  Point Pattern Analysis , 2010 .

[25]  Michael Jerrett,et al.  Conceptual and practical issues in the detection of local disease clusters: a study of mortality in Hamilton, Ontario , 2002 .

[26]  Gerard Rushton,et al.  Modeling the probability distribution of positional errors incurred by residential address geocoding , 2007 .

[27]  Laurent Polidori,et al.  Dengue Spatial and Temporal Patterns, French Guiana, 2001 , 2004, Emerging infectious diseases.

[28]  Irene Casas,et al.  Protection of Geoprivacy and Accuracy of Spatial Information: How Effective Are Geographical Masks? , 2004, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[29]  Lars Eisen,et al.  Use of Mapping and Spatial and Space-Time Modeling Approaches in Operational Control of Aedes aegypti and Dengue , 2009, PLoS neglected tropical diseases.

[30]  P. Zandbergen Geocoding Quality and Implications for Spatial Analysis , 2009 .

[31]  U. Kitron,et al.  Risk maps: transmission and burden of vector-borne diseases. , 2000, Parasitology today.

[32]  Sarah E. Randolph,et al.  Studying the global distribution of infectious diseases using GIS and RS , 2003, Nature Reviews Microbiology.

[33]  Nina S. N. Lam,et al.  Geospatial Methods for Reducing Uncertainties in Environmental Health Risk Assessment: Challenges and Opportunities , 2012 .

[34]  Trevor C. Bailey,et al.  Interactive Spatial Data Analysis , 1995 .

[35]  Irene Casas,et al.  A Space-Time Approach to Diffusion of Health Service Provision Information , 2010 .

[36]  Daniel A. Griffith,et al.  Impacts of Positional Error on Spatial Regression Analysis: A Case Study of Address Locations in Syracuse, New York , 2007, Trans. GIS.

[37]  Qunying Huang,et al.  Using spatial principles to optimize distributed computing for enabling the physical science discoveries , 2011, Proceedings of the National Academy of Sciences.

[38]  Michael Allen,et al.  Parallel programming: techniques and applications using networked workstations and parallel computers , 1998 .

[39]  Pemetaan Jumlah Balita,et al.  Spatial Scan Statistic , 2014, Encyclopedia of Social Network Analysis and Mining.

[40]  ScienceDirect,et al.  Spatial and spatio-temporal epidemiology , 2009 .

[41]  Gerard Rushton,et al.  Geocoding accuracy and the recovery of relationships between environmental exposures and health , 2008, International journal of health geographics.

[42]  R. Eisen,et al.  Using Geographic Information Systems and Decision Support Systems for the Prediction , Prevention , and Control of Vector-Borne Diseases , 2010 .

[43]  R. Sugumaran,et al.  Application of geospatial technologies for understanding and predicting vector populations and vector-borne disease incidence , 2012 .

[44]  Gary Higgs,et al.  Visualising space and time in crime patterns: A comparison of methods , 2007, Comput. Environ. Urban Syst..

[45]  Alan L Rothman,et al.  Spatial and Temporal Clustering of Dengue Virus Transmission in Thai Villages , 2008, PLoS medicine.

[46]  Philip Weinstein,et al.  Review: Geographical Information Systems for Dengue Surveillance , 2012 .

[47]  Jie Li,et al.  Spatial autocorrelation among automated geocoding errors and its effects on testing for disease clustering , 2010, Statistics in medicine.

[48]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[49]  Gisela Bichler,et al.  Address matching bias: ignorance is not bliss , 2007 .

[50]  Philip Weinstein,et al.  Geographical information systems for dengue surveillance. , 2012, The American journal of tropical medicine and hygiene.

[51]  Shaowen Wang,et al.  Agent-based modeling within a cyberinfrastructure environment: a service-oriented computing approach , 2011, Int. J. Geogr. Inf. Sci..

[52]  Leland Wilkinson,et al.  The History of the Cluster Heat Map , 2009 .

[53]  D. Gubler,et al.  Dengue/dengue hemorrhagic fever: the emergence of a global health problem. , 1995, Emerging infectious diseases.

[54]  David L Buckeridge,et al.  Residential address errors in public health surveillance data: a description and analysis of the impact on geocoding. , 2010, Spatial and spatio-temporal epidemiology.

[55]  W. F. Athas,et al.  Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. , 1998, American journal of public health.

[56]  Beatriz Parra,et al.  Human and mosquito infections by dengue viruses during and after epidemics in a dengue-endemic region of Colombia. , 2006, The American journal of tropical medicine and hygiene.

[57]  Nicholas Malizia,et al.  Inaccuracy, Uncertainty and the Space-Time Permutation Scan Statistic , 2013, PloS one.

[58]  Sylvia Richardson,et al.  Use of Space–Time Models to Investigate the Stability of Patterns of Disease , 2008, Environmental health perspectives.

[59]  Amy C. Morrison,et al.  Fine Scale Spatiotemporal Clustering of Dengue Virus Transmission in Children and Aedes aegypti in Rural Thai Villages , 2012, PLoS neglected tropical diseases.

[60]  E G Knox,et al.  The Detection of Space‐Time Interactions , 1964 .

[61]  Yifei Sun,et al.  Spatial monitoring of geographic patterns: an application to crime analysis , 2001 .

[62]  A. Getis,et al.  Using AMOEBA to Create a Spatial Weights Matrix and Identify Spatial Clusters , 2006 .

[63]  Awash Teklehaimanot,et al.  A temporal-spatial analysis of malaria transmission in Adama, Ethiopia. , 2009, The American journal of tropical medicine and hygiene.

[64]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[65]  Paul A. Zandbergen,et al.  A comparison of address point, parcel and street geocoding techniques , 2008, Comput. Environ. Urban Syst..

[66]  Nicholas Malizia,et al.  The Effect of Data Inaccuracy on Tests of Space‐Time Interaction , 2013, Trans. GIS.

[67]  David A. Bennett,et al.  Parallel agent-based modeling of spatial opinion diffusion accelerated using graphics processing units , 2011 .

[68]  Yutaka Harada,et al.  Examining the impact of the precision of address geocoding on estimated density of crime locations , 2006, Comput. Geosci..

[69]  Gerard B. M. Heuvelink,et al.  Error Propagation in Environmental Modelling with GIS , 1998 .

[70]  Irene Casas,et al.  H.E.L.P: A GIS-based Health Exploratory AnaLysis Tool for Practitioners , 2011 .

[71]  Shaowen Wang,et al.  A theoretical approach to the use of cyberinfrastructure in geographical analysis , 2009, Int. J. Geogr. Inf. Sci..

[72]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[73]  L. Anselin From SpaceStat to CyberGIS , 2012 .

[74]  Yuemin Ding,et al.  Spatial Strategies for Parallel Spatial Modelling , 1996, Int. J. Geogr. Inf. Sci..

[75]  Fernando Gustavo Tinetti,et al.  Parallel programming: techniques and applications using networked workstations and parallel computers. Barry Wilkinson, C. Michael Allen , 2000 .

[76]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[77]  Ikuho Yamada,et al.  Statistical Detection and Surveillance of Geographic Clusters , 2008 .

[78]  Kirsi Virrantaus,et al.  Space–time density of trajectories: exploring spatio-temporal patterns in movement data , 2010, Int. J. Geogr. Inf. Sci..

[79]  I. Yoon Fine scale spatiotemporal clustering of dengue virus transmission in children and Aedes aegypti in rural Thai villages , 2012 .

[80]  Manfred M. Fischer,et al.  Handbook of Applied Spatial Analysis , 2010 .

[81]  Geoffrey M. Jacquez,et al.  Design and implementation of a Space-Time Intelligence System for disease surveillance , 2005, J. Geogr. Syst..

[82]  Shaowen Wang,et al.  HPABM: A Hierarchical Parallel Simulation Framework for Spatially‐explicit Agent‐based Models , 2009, Trans. GIS.

[83]  Eric M. Delmelle,et al.  Spatio-Temporal Patterns of Dengue Fever in Cali, Colombia , 2013, Int. J. Appl. Geospat. Res..