Materials data specification: Methods and use cases

Abstract With the extremely fast development of Materials Genome Initiative (MGI) and Materials Informatics (MI), expressing materials data formally, semantically and scientifically is urgently demanded. According to the features of materials data, we proposed a hierarchical representation of materials data specification described by Backus-Naur Form (BNF) in this paper and then use XML Schema Definitions (XSD) to implement BNF. Subsequently, a detailed XSD writing guidance for simple data, tabular data and unstructured data is given. Moreover, this paper also provides the code to validate data in XML format with pre-defined XSD template. Finally, we will give the general form of computational data specification and experimental data specification for researchers’ reference.

[1]  Yannis Papakonstantinou,et al.  DTD inference for views of XML data , 2000, PODS.

[2]  Jack C. Wileden,et al.  A semantic knowledge management system for laminated composites , 2014, Adv. Eng. Informatics.

[3]  E F Begley MatML version 3.0 schema , 2003 .

[4]  Toshihiro Ashino,et al.  Materials Ontology: An Infrastructure for Exchanging Materials Information and Knowledge , 2010, Data Sci. J..

[5]  Adele P. Peskin,et al.  Informatics Infrastructure for the Materials Genome Initiative , 2016 .

[6]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[7]  Cuiwei Du,et al.  Materials science: Share corrosion data , 2015, Nature.

[8]  Xiaoming Zhang,et al.  Semantic Query on Materials Data Based on Mapping MatML to an OWL Ontology , 2009, Data Sci. J..

[9]  B. Meredig,et al.  Materials science with large-scale data and informatics: Unlocking new opportunities , 2016 .

[10]  Jg Kaufman Standards for Computerized Material Property Data—ASTM Committee E-49 , 1989 .

[11]  Michael J. Pratt,et al.  Introduction to ISO 10303 - the STEP Standard for Product Data Exchange. pp , 2001, J. Comput. Inf. Sci. Eng..

[12]  Jyh-Charn Liu,et al.  XML Document Parsing: Operational and Performance Characteristics , 2008, Computer.

[13]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[14]  Georg J. Schmitz,et al.  Towards a metadata scheme for the description of materials – the description of microstructures , 2016, Science and technology of advanced materials.

[15]  Emilio Rubiera,et al.  ONTORULE: from business knowledge to ontology- and rules-based applications , 2011, CASCON.

[16]  Krishna Rajan,et al.  Materials Informatics: The Materials ``Gene'' and Big Data , 2015 .

[17]  Fawzi Mohamed,et al.  Towards efficient data exchange and sharing for big-data driven materials science: metadata and data formats , 2017, npj Computational Materials.

[18]  C. M. Sperberg-McQueen,et al.  Extensible Markup Language (XML) , 1997, World Wide Web J..

[19]  John McCarthy,et al.  Recursive functions of symbolic expressions and their computation by machine, Part I , 1959, Commun. ACM.

[20]  Claudio Gutierrez,et al.  Survey of graph database models , 2008, CSUR.

[21]  A. Choudhary,et al.  Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science , 2016 .

[22]  Deborah L. McGuinness,et al.  NanoMine schema: An extensible data representation for polymer nanocomposites , 2018, APL Materials.

[23]  Quan Qian,et al.  Ontology based heterogeneous materials database integration and semantic query , 2017 .