Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane

[1]  F. Frusteri,et al.  The effect of modifier identity on the performance of Ni-based catalyst supported on γ-Al2O3 in dry reforming of methane , 2020, Catalysis Today.

[2]  A. Osman Catalytic Hydrogen Production from Methane Partial Oxidation: Mechanism and Kinetic Study , 2020, Chemical Engineering & Technology.

[3]  Shengjian Zhang,et al.  Comparison of carbon deposition features between Ni/ZrO2 and Ni/SBA-15 for the dry reforming of methane , 2019, Reaction Kinetics, Mechanisms and Catalysis.

[4]  Yongxiang Zhao,et al.  The importance of inner cavity space within Ni@SiO2 nanocapsule catalysts for excellent coking resistance in the high-space-velocity dry reforming of methane , 2019, Applied Catalysis B: Environmental.

[5]  D. Simakov,et al.  Mediating interaction strength between nickel and zirconia using a mixed oxide nanosheets interlayer for methane dry reforming , 2019, Applied Catalysis B: Environmental.

[6]  P. Guan,et al.  Carbon Formation Mechanism of C2H2 in Ni-Based Catalysts Revealed by in Situ Electron Microscopy and Molecular Dynamics Simulations , 2019, ACS omega.

[7]  Junfeng Zhang,et al.  Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide , 2019, Applied Catalysis B: Environmental.

[8]  S. Alavi,et al.  Catalytic performance of Ni supported on ZnO‐Al 2 O 3 composites with different Zn content in methane dry reforming , 2019, Journal of Chemical Technology & Biotechnology.

[9]  Peng Zhang,et al.  Hollow hierarchical Ni/MgO-SiO2 catalyst with high activity, thermal stability and coking resistance for catalytic dry reforming of methane , 2018, International Journal of Hydrogen Energy.

[10]  R. Gläser,et al.  The role of acid/base properties in Ni/MgO-ZrO2–based catalysts for dry reforming of methane , 2017 .

[11]  T. Yabe,et al.  Low-temperature dry reforming of methane to produce syngas in an electric field over La-doped Ni/ZrO2 catalysts , 2017 .

[12]  S. Kawi,et al.  Highly carbon-resistant Ni–Co/SiO2 catalysts derived from phyllosilicates for dry reforming of methane , 2017 .

[13]  Liquan Chen,et al.  Enhanced coking tolerance of a MgO-modified Ni cermet anode for hydrocarbon fueled solid oxide fuel cells , 2016 .

[14]  Yongxiang Zhao,et al.  Carbon intermediates during CO2 reforming of methane over NiCaOZrO2 catalysts: A temperature-programmed surface reaction study , 2016 .

[15]  Arzu Arslan,et al.  Effect of calcination/reduction temperature of Ni impregnated CeO2–ZrO2 catalysts on hydrogen yield and coke minimization in low temperature reforming of ethanol , 2016 .

[16]  R. Gläser,et al.  Dry reforming of methane with carbon dioxide over NiO–MgO–ZrO2 , 2016 .

[17]  Lu Yao,et al.  Low-temperature CO2 reforming of methane on Zr-promoted Ni/SiO2 catalyst , 2016 .

[18]  Fanxing Li,et al.  Coke-resistant Ni@SiO2 catalyst for dry reforming of methane , 2015 .

[19]  Peng Zhang,et al.  Phyllosilicate evolved hierarchical Ni- and Cu–Ni/SiO2 nanocomposites for methane dry reforming catalysis , 2015 .

[20]  Lidong Li,et al.  Effect of NiAl2O4 Formation on Ni/Al2O3 Stability during Dry Reforming of Methane , 2015 .

[21]  M. Beller,et al.  Nitrogen-Doped Graphene-Activated Iron-Oxide-Based Nanocatalysts for Selective Transfer Hydrogenation of Nitroarenes , 2015 .

[22]  F. Krumeich,et al.  Preparation of Sn-doped 2–3 nm Ni nanoparticles supported on SiO2 via surface organometallic chemistry for low temperature dry reforming catalyst: The effect of tin doping on activity, selectivity and stability , 2014 .

[23]  Fereshteh Meshkani,et al.  Effect of Ni loadings on the activity and coke formation of MgO-modified Ni/Al2O3 nanocatalyst in dry reforming of methane , 2014 .

[24]  Fereshteh Meshkani,et al.  Effects of support modifiers on the catalytic performance of Ni/Al2O3 catalyst in CO2 reforming of methane , 2014 .

[25]  S. Kawi,et al.  A highly dispersed and anti-coking Ni–La2O3/SiO2 catalyst for syngas production from dry carbon dioxide reforming of methane , 2014 .

[26]  S. Kawi,et al.  Yolk–Satellite–Shell Structured Ni–Yolk@Ni@SiO2 Nanocomposite: Superb Catalyst toward Methane CO2 Reforming Reaction , 2014 .

[27]  H. Matralis,et al.  Boron-modified Ni/Al2O3 catalysts for reduced carbon deposition during dry reforming of methane , 2014 .

[28]  Yuhan Sun,et al.  The Properties of Individual Carbon Residuals and Their Influence on The Deactivation of Ni–CaO–ZrO2 Catalysts in CH4 Dry Reforming , 2014 .

[29]  M. Muhler,et al.  Stable Performance of Ni Catalysts in the Dry Reforming of Methane at High Temperatures for the Efficient Conversion of CO2 into Syngas , 2014 .

[30]  E. Kondratenko,et al.  Effect of calcination conditions on time on-stream performance of Ni/La2O3–ZrO2 in low-temperature dry reforming of methane , 2013 .

[31]  Mohammad Haghighi,et al.  Non-thermal plasma assisted synthesis and physicochemical characterizations of Co and Cu doped Ni/Al2O3 nanocatalysts used for dry reforming of methane , 2013 .

[32]  Peng Zhang,et al.  Cu–Ni@SiO2 alloy nanocomposites for methane dry reforming catalysis , 2013 .

[33]  Lu Yao,et al.  Comparative study on the promotion effect of Mn and Zr on the stability of Ni/SiO2 catalyst for CO2 reforming of methane , 2013 .

[34]  Al-Fatesh Ahmed Sadeq,et al.  CO2 Reforming of Methane to Produce Syngas over γ-Al2O3-Supported Ni–Sr Catalysts , 2013 .

[35]  E. Assaf,et al.  Combination of dry reforming and partial oxidation of methane on NiO–MgO–ZrO2 catalyst: Effect of nickel content , 2013 .

[36]  Shuyi Zhang,et al.  Synthesis gas production in the combined CO2 reforming with partial oxidation of methane over Ce-promoted Ni/SiO2 catalysts , 2013 .

[37]  Lu Yao,et al.  Synthesis gas production from CO2 reforming of methane over Ni–Ce/SiO2 catalyst: The effect of calcination ambience , 2013 .

[38]  J. Tardio,et al.  A comparison study on carbon dioxide reforming of methane over Ni catalysts supported on mesoporous SBA-15, MCM-41, KIT-6 and gamma-Al2 , 2013 .

[39]  J. Tardio,et al.  Highly stable ytterbium promoted Ni/γ-Al2O3 catalysts for carbon dioxide reforming of methane , 2012 .

[40]  Julian R.H. Ross,et al.  The effect of potassium on the activity and stability of Ni–MgO–ZrO2 catalysts for the dry reforming of methane to give synthesis gas , 2011 .

[41]  M. Illán-Gómez,et al.  K and Sr promoted Co alumina supported catalysts for the CO2 reforming of methane , 2011 .

[42]  Yuhan Sun,et al.  Catalytic performance and characterization of Ni-CaO-ZrO2 catalysts for dry reforming of methane , 2011 .

[43]  Lu Yao,et al.  The promoting effect of La, Mg, Co and Zn on the activity and stability of Ni/SiO2 catalyst for CO2 reforming of methane , 2011 .

[44]  J. P. Holgado,et al.  Modifying the Size of Nickel Metallic Particles by H2/CO Treatment in Ni/ZrO2 Methane Dry Reforming Catalysts , 2011 .

[45]  M. Valenzuela,et al.  Effect of Ca, Ce or K oxide addition on the activity of Ni/SiO2 catalysts for the methane decomposition reaction , 2010 .

[46]  Hong Wang,et al.  Nickel-grafted TUD-1 mesoporous catalysts for carbon dioxide reforming of methane , 2010 .

[47]  A. Trovarelli,et al.  Ni/CeO2-ZrO2 catalysts for the dry reforming of methane , 2010 .

[48]  F. Mondragón,et al.  Effect of MgO addition on the basicity of Ni/ZrO2 and on its catalytic activity in carbon dioxide reforming of methane , 2009 .

[49]  Dapeng Liu,et al.  Carbon dioxide reforming of methane over nickel-grafted SBA-15 and MCM-41 catalysts , 2009 .

[50]  Jihui Wang,et al.  Characterization and Analysis of Carbon Deposited during the Dry Reforming of Methane over Ni/La2O3/Al2O3 Catalysts , 2009 .

[51]  W. Kiatkittipong,et al.  Effect of oxygen addition on catalytic performance of Ni/SiO2·MgO toward carbon dioxide reforming of methane under periodic operation , 2009 .

[52]  Hui Lou,et al.  Combination of CO2 reforming and partial oxidation of methane to produce syngas over Ni/SiO2 and Ni–Al2O3/SiO2 catalysts with different precursors , 2009 .

[53]  Adolfo E. Castro Luna,et al.  Carbon dioxide reforming of methane over a metal modified Ni-Al2O3 catalyst , 2008 .

[54]  S. Therdthianwong,et al.  Improvement of coke resistance of Ni/Al2O3 catalyst in CH4/CO2 reforming by ZrO2 addition , 2008 .

[55]  S. Therdthianwong,et al.  Synthesis gas production from dry reforming of methane over Ni/Al2O3 stabilized by ZrO2 , 2008 .

[56]  Xinmei Liu,et al.  CO2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts , 2008 .

[57]  S. C. Dhingra,et al.  Deactivation Studies over Ni−K/CeO2−Al2O3 Catalyst for Dry Reforming of Methane , 2007 .

[58]  M. Illán-Gómez,et al.  Effect of potassium content in the activity of K-promoted Ni/Al2O3 catalysts for the dry reforming of methane , 2006 .

[59]  F. Pompeo,et al.  Characterization of Ni/SiO2 and Ni/Li-SiO2 catalysts for methane dry reforming , 2005 .

[60]  S. Assabumrungrat,et al.  Synthesis gas production from dry reforming of methane over CeO2 doped Ni/Al2O3: Influence of the doping ceria on the resistance toward carbon formation , 2005 .

[61]  Y. Jeong,et al.  Effect of H2 Gas on Carbon Nanotubes Synthesis , 2005 .

[62]  K. Jun,et al.  Carbon dioxide reforming of methane over co-precipitated Ni–CeO2, Ni–ZrO2 and Ni–Ce–ZrO2 catalysts , 2004 .

[63]  Hui Lou,et al.  Combination of CO2 reforming and partial oxidation of methane over Ni/BaO-SiO2 catalysts to produce low H2/CO ratio syngas using a fluidized bed reactor , 2004 .

[64]  U. Chung Effect of H 2 on Formation Behavior of Carbon Nanotubes , 2004 .

[65]  J. S. Lee,et al.  Mn-promoted Ni/Al2O3 catalysts for stable carbon dioxide reforming of methane , 2002 .

[66]  Antonio Monzón,et al.  Methane reforming with CO2 over Ni/ZrO2–CeO2 catalysts prepared by sol–gel , 2000 .