Optimizing quantum phase estimation for the simulation of Hamiltonian eigenstates

We revisit quantum phase estimation algorithms for the purpose of obtaining the energy levels of many-body Hamiltonians and pay particular attention to the statistical analysis of their outputs. We introduce the mean phase direction of the parent distribution associated with eigenstate inputs as a new post-processing tool. By connecting it with the unknown phase, we find that if used as its direct estimator, it exceeds the accuracy of the standard majority rule using one less bit of resolution, making evident that it can also be inverted to provide unbiased estimation. Moreover, we show how to directly use this quantity to accurately find the energy levels when the initialized state is an eigenstate of the simulated propagator during the whole time evolution, which allows for shallower algorithms. We then use IBM Q hardware to carry out the digital quantum simulation of three toy models: a two-level system, a two-spin Ising model and a two-site Hubbard model at half-filling. Methodologies are provided to implement Trotterization and reduce the variability of results in noisy intermediate scale quantum computers.

[1]  James R. Wootton Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment , 2016, 1609.07774.

[2]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[3]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[4]  Rob Thew,et al.  Quantum Science and Technology—one year on , 2018 .

[5]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[6]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[7]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[8]  R. Feynman Simulating physics with computers , 1999 .

[9]  Proceedings of the Royal Society (London) , 1906, Science.

[10]  Ivano Tavernelli,et al.  Optimizing qubit resources for quantum chemistry simulations in second quantization on a quantum computer , 2015, 1510.04048.

[11]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[12]  Stephen R. Langhoff,et al.  Quantum mechanical electronic structure calculations with chemical accuracy , 1995 .

[13]  B. Terhal,et al.  Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments , 2018, New Journal of Physics.

[14]  Trevor Hastie,et al.  Computer Age Statistical Inference: Algorithms, Evidence, and Data Science , 2016 .

[15]  Göran Wendin,et al.  Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: A two-qubit benchmark , 2006, quant-ph/0610214.

[16]  Jstor,et al.  Proceedings of the American Mathematical Society , 1950 .

[17]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[18]  M. Hastings,et al.  Solving strongly correlated electron models on a quantum computer , 2015, 1506.05135.

[19]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[20]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[21]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[22]  Alba Cervera-Lierta Exact Ising model simulation on a quantum computer , 2018, Quantum.

[23]  Shelby Kimmel,et al.  Robust Calibration of a Universal Single-Qubit Gate-Set via Robust Phase Estimation , 2015, 1502.02677.

[24]  H. Trotter On the product of semi-groups of operators , 1959 .

[25]  Rolando D. Somma,et al.  Quantum eigenvalue estimation via time series analysis , 2019, New Journal of Physics.

[26]  H. M. Wiseman,et al.  Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements , 2008, 0809.3308.

[27]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[28]  Peter Zoller,et al.  Quantum localization bounds Trotter errors in digital quantum simulation , 2018, Science Advances.

[29]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[31]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[32]  Sachin S. Sapatnekar,et al.  IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems: Guest Editorial , 2004 .

[33]  E. Wigner,et al.  About the Pauli exclusion principle , 1928 .

[34]  J. Latorre,et al.  Experimental test of Mermin inequalities on a five-qubit quantum computer , 2016, 1605.04220.

[35]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[36]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  M. Birkner,et al.  Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach , 2002 .

[38]  A. Chiesa,et al.  Quantum hardware simulating four-dimensional inelastic neutron scattering , 2018, Nature Physics.

[39]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[40]  Simon J. Devitt,et al.  Performing Quantum Computing Experiments in the Cloud , 2016, 1605.05709.

[41]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[42]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.