High-throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries
暂无分享,去创建一个
Chirag Jain | Srinivas Aluru | Adam M. Phillippy | Konstantinos T. Konstantinidis | Luis M. Rodriguez-R
[1] S. Salzberg,et al. Versatile and open software for comparing large genomes , 2004, Genome Biology.
[2] Natalia N. Ivanova,et al. Microbial species delineation using whole genome sequences , 2015, Nucleic acids research.
[3] R. Rosselló-Móra. Updating Prokaryotic Taxonomy , 2005, Journal of bacteriology.
[4] K. Konstantinidis,et al. Genomic insights that advance the species definition for prokaryotes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[5] Siv G. E. Andersson,et al. genoPlotR: comparative gene and genome visualization in R , 2010, Bioinform..
[6] K. Konstantinidis,et al. The bacterial species definition in the genomic era , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.
[7] J. Chun,et al. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. , 2016, International journal of systematic and evolutionary microbiology.
[8] K. Konstantinidis,et al. Toward a More Robust Assessment of Intraspecies Diversity, Using Fewer Genetic Markers , 2006, Applied and Environmental Microbiology.
[9] Brian D. Ondov,et al. Mash: fast genome and metagenome distance estimation using MinHash , 2015, Genome Biology.
[10] Otto X. Cordero,et al. Population Genomics of Early Events in the Ecological Differentiation of Bacteria , 2012, Science.
[11] R. Rosselló-Móra,et al. Shifting the genomic gold standard for the prokaryotic species definition , 2009, Proceedings of the National Academy of Sciences.
[12] Chirag Jain,et al. A Fast Approximate Algorithm for Mapping Long Reads to Large Reference Databases , 2017 .
[13] Konstantinos T. Konstantinidis,et al. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species , 2011, Proceedings of the National Academy of Sciences.
[14] F. Blattner,et al. Mauve: multiple alignment of conserved genomic sequence with rearrangements. , 2004, Genome research.
[15] J. Banfield,et al. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication , 2017, The ISME Journal.
[16] Natalia N. Ivanova,et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea , 2009, Nature.
[17] J. Landolin,et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing , 2014, Nature Biotechnology.
[18] K. Konstantinidis,et al. Bacterial species may exist, metagenomics reveal. , 2012, Environmental microbiology.
[19] C. Fraser,et al. The Bacterial Species Challenge: Making Sense of Genetic and Ecological Diversity , 2009, Science.
[20] K. Konstantinidis,et al. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes , 2016 .
[21] S. Koren,et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.
[22] Adam M. Phillippy,et al. Interactive metagenomic visualization in a Web browser , 2011, BMC Bioinformatics.
[23] F. Cohan. Bacterial species and speciation. , 2001, Systematic biology.
[24] Andrei Z. Broder,et al. On the resemblance and containment of documents , 1997, Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171).
[25] P. Vandamme,et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. , 2007, International journal of systematic and evolutionary microbiology.
[26] Nikos Kyrpides,et al. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis , 2003, Nature.