Conformal Parallel Plate Waveguide Polarizer Integrated in a Geodesic Lens Antenna

Here, we propose a low-profile polarizing technique integrated in a parallel plate waveguide (PPW) configuration, compatible with fully metallic geodesic lens antennas. The geodesic shape of the antenna is chosen to resemble the operation of a Luneburg lens. The lens is fed with 11 waveguide ports with 10° separation producing 11 switchable beams in an angular range of <inline-formula> <tex-math notation="LaTeX">$\pm \mathrm{50}^{\circ }$ </tex-math></inline-formula>. Two metallic polarizing screens are loaded into the aperture of the antenna to rotate the electric field from a vertical linear polarization, which is the polarization of the transverse electromagnetic (TEM) mode supported in the lens, to a <inline-formula> <tex-math notation="LaTeX">$+ \mathrm{45}^{\circ }$ </tex-math></inline-formula> linear polarization. Since the polarizing unit cells are integrated into the aperture of the antenna, the final design is compact. In addition, the size of the polarizing unit cells is about <inline-formula> <tex-math notation="LaTeX">$0.55\lambda $ </tex-math></inline-formula> at the central frequency of operation making the antenna suitable to produce an array formed of stacked lenses. A prototype of the antenna in the <inline-formula> <tex-math notation="LaTeX">$\text{K}_{\text {a}}$ </tex-math></inline-formula>-band was manufactured and tested, verifying the performance obtained in simulations.

[1]  N. Fonseca,et al.  Geodesic Lens Antennas for 5G and Beyond , 2022, IEEE Communications Magazine.

[2]  N. Fonseca,et al.  Fully Metallic Dual-Band Linear-to-Circular Polarizer for K/Ka-band , 2021, IEEE Antennas and Wireless Propagation Letters.

[3]  O. Zetterstrom,et al.  Experimental Validation of a Metasurface Luneburg Lens Antenna Implemented With Glide-Symmetric Substrate-Integrated Holes , 2021, IEEE Antennas and Wireless Propagation Letters.

[4]  N. Fonseca,et al.  Angularly Stable Linear-to-Circular Polarizing Reflectors for Multiple Beam Antennas , 2021, IEEE Transactions on Antennas and Propagation.

[5]  M. A. Campo,et al.  Wideband Circularly Polarized Antenna With In-Lens Polarizer for High-Speed Communications , 2021, IEEE Transactions on Antennas and Propagation.

[6]  N. Fonseca,et al.  Compact parallel‐plate waveguide half‐Luneburg geodesic lens in the Ka‐band , 2020, IET Microwaves, Antennas & Propagation.

[7]  A. Grbic,et al.  Dual-Band, Orthogonally-Polarized LP-to-CP Converter for SatCom Applications , 2020, IEEE Transactions on Antennas and Propagation.

[8]  N. Fonseca,et al.  Equivalent Planar Lens Ray-Tracing Model to Design Modulated Geodesic Lenses Using Non-Euclidean Transformation Optics , 2020, IEEE Transactions on Antennas and Propagation.

[9]  L. Le Coq,et al.  Shaped Continuous Parallel Plate Delay Lens With Enhanced Scanning Performance , 2019, IEEE Transactions on Antennas and Propagation.

[10]  Guido Valerio,et al.  Fully Metallic Flat Lens Based on Locally Twist-Symmetric Array of Complementary Split-Ring Resonators , 2019, Symmetry.

[11]  Yu Jian Cheng,et al.  Single-Layer Dual-Band Linear-to-Circular Polarization Converter With Wide Axial Ratio Bandwidth and Different Polarization Modes , 2019, IEEE Transactions on Antennas and Propagation.

[12]  Ronan Sauleau,et al.  Circularly Polarized Parallel Plate Waveguide Multiple-Beam Lens-like Antenna for Satcom Applications , 2019, 2019 13th European Conference on Antennas and Propagation (EuCAP).

[13]  N. Fonseca,et al.  Compact Multibeam Fully Metallic Geodesic Luneburg Lens Antenna Based on Non-Euclidean Transformation Optics , 2018, IEEE Transactions on Antennas and Propagation.

[14]  Fatemeh Ghasemifard,et al.  Lens Antennas for 5G Communications Systems , 2018, IEEE Communications Magazine.

[15]  H. Wong,et al.  Design of a Wideband Circularly Polarized Millimeter-Wave Antenna With an Extended Hemispherical Lens , 2018, IEEE Transactions on Antennas and Propagation.

[16]  Emil Björnson,et al.  Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency , 2018, Found. Trends Signal Process..

[17]  Jian-ying Li,et al.  A Broadband Circular Polarizer Based on Cross-Shaped Composite Frequency Selective Surfaces , 2017, IEEE Transactions on Antennas and Propagation.

[18]  Yi Wang,et al.  Broadband High-Gain Beam-Scanning Antenna Array for Millimeter-Wave Applications , 2017, IEEE Transactions on Antennas and Propagation.

[19]  Pavel A. Belov,et al.  Broadband and Thin Linear-to-Circular Polarizers Based on Self-Complementary Zigzag Metasurfaces , 2017, IEEE Transactions on Antennas and Propagation.

[20]  Nelson J. G. Fonseca,et al.  High-Performance Electrically Thin Dual-Band Polarizing Reflective Surface for Broadband Satellite Applications , 2016, IEEE Transactions on Antennas and Propagation.

[21]  A. Valero-Nogueira,et al.  LOCOMO satcom terminal: A switchable RHCP/LHCP Array Antenna for on-the-move applications in Ka-band , 2015, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[22]  R. C. Mitchell-Thomas,et al.  Lenses on curved surfaces. , 2014, Optics letters.

[23]  S. A. R. Horsley,et al.  Removing singular refractive indices with sculpted surfaces , 2014, Scientific Reports.

[24]  Theodore S. Rappaport,et al.  Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges , 2014, Proceedings of the IEEE.

[25]  S. Vaccaro,et al.  Ku-band hybrid phased array antennas for mobile satellite communication systems , 2013, 2013 7th European Conference on Antennas and Propagation (EuCAP).

[26]  Simon A. R. Horsley,et al.  Thin metamaterial Luneburg lens for surface waves , 2013 .

[27]  F. Caminita,et al.  Non-Uniform Metasurface Luneburg Lens Antenna Design , 2012, IEEE Transactions on Antennas and Propagation.

[28]  T. Tyc,et al.  Multi-focal spherical media and geodesic lenses in geometrical optics , 2012, 1305.0696.

[29]  Erik G. Larsson,et al.  Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays , 2012, IEEE Signal Process. Mag..

[30]  Yunchou Xing,et al.  Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators , 2011, 1109.3775.

[31]  L. Le Coq,et al.  Multi-Beam Multi-Layer Leaky-Wave SIW Pillbox Antenna for Millimeter-Wave Applications , 2011, IEEE Transactions on Antennas and Propagation.

[32]  A. Hajimiri,et al.  A fully integrated 24-GHz phased-array transmitter in CMOS , 2005, IEEE Journal of Solid-State Circuits.

[33]  Ming Chen,et al.  A wide-band square-waveguide array polarizer , 1973 .

[34]  E. Sharp Electromagnetic theory of wire-grid lens HF antennas , 1964 .

[35]  K. Kunz,et al.  Propagation of Microwaves between a Parallel Pair of Doubly Curved Conducting Surfaces , 1954 .

[36]  G. Peeler,et al.  A two-dimensional microwave luneberg lens , 1953 .

[37]  S. Jones,et al.  Metallic Delay Lenses , 1949, Nature.

[38]  R. F. Rinehart A Solution of the Problem of Rapid Scanning for Radar Antennae , 1948 .

[39]  N. Fonseca,et al.  Quasi-Optical Multi-Beam Antenna Technologies for B5G and 6G mmWave and THz Networks: A Review , 2021, IEEE Open Journal of Antennas and Propagation.

[40]  Zehong Yan,et al.  Wideband Low-Profile Luneburg Lens Based on a Glide-Symmetric Metasurface , 2020, IEEE Access.

[41]  A. Dhouibi,et al.  Low-Profile Substrate-Integrated Lens Antenna Using Metamaterials , 2013, IEEE Antennas and Wireless Propagation Letters.

[42]  A. Ludwig The definition of cross polarization , 1973 .

[43]  W. Rotman,et al.  Wide-angle scanning with microwave double-layer pillboxes , 1958 .

[44]  R. K. Luneburg,et al.  Mathematical Theory of Optics , 1966 .