Biosynthesis of a steroid metabolite by an engineered Rhodococcus erythropolis strain expressing a mutant cytochrome P450 BM3 enzyme

[1]  N. Vermeulen,et al.  A Single Active Site Mutation Inverts Stereoselectivity of 16‐Hydroxylation of Testosterone Catalyzed by Engineered Cytochrome P450 BM3 , 2012, Chembiochem : a European journal of chemical biology.

[2]  L. Dijkhuizen,et al.  3-Keto-5alpha-steroid Delta(1)-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism. , 2008, The Biochemical journal.

[3]  R. Bernhardt,et al.  Towards Preparative Scale Steroid Hydroxylation with Cytochrome P450 Monooxygenase CYP106A2 , 2010, Chembiochem : a European journal of chemical biology.

[4]  Vlada B Urlacher,et al.  Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. , 2012, Trends in biotechnology.

[5]  T. Kudo,et al.  Multiplicity of 2,3-Dihydroxybiphenyl Dioxygenase Genes in the Gram-positive Polychlorinated Biphenyl Degrading Bacterium Rhodococcus rhodochrous K37 , 2004, Bioscience, biotechnology, and biochemistry.

[6]  N. Nakashima,et al.  Isolation and Characterization of a Rolling-Circle-Type Plasmid from Rhodococcus erythropolis and Application of the Plasmid to Multiple-Recombinant-Protein Expression , 2004, Applied and Environmental Microbiology.

[7]  V. Urlacher,et al.  Microbial P450 enzymes in biotechnology , 2004, Applied Microbiology and Biotechnology.

[8]  N. Vermeulen,et al.  Identification of critical residues in novel drug metabolizing mutants of cytochrome P450 BM3 using random mutagenesis. , 2007, Journal of medicinal chemistry.

[9]  René L. Warren,et al.  The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse , 2006, Proceedings of the National Academy of Sciences.

[10]  S. Wijmenga,et al.  Active site substitution A82W improves the regioselectivity of steroid hydroxylation by cytochrome P450 BM3 mutants as rationalized by spin relaxation nuclear magnetic resonance studies. , 2012, Biochemistry.

[11]  N. Vermeulen,et al.  Application of drug metabolising mutants of cytochrome P450 BM3 (CYP102A1) as biocatalysts for the generation of reactive metabolites. , 2008, Chemico-biological interactions.

[12]  L. Dijkhuizen,et al.  Characterization of a Second Rhodococcus erythropolis SQ1 3-Ketosteroid 9α-Hydroxylase Activity Comprising a Terminal Oxygenase Homologue, KshA2, Active with Oxygenase-Reductase Component KshB , 2008, Applied and Environmental Microbiology.

[13]  R. Bernhardt,et al.  Efficient conversion of 11-deoxycortisol to cortisol (hydrocortisone) by recombinant fission yeast Schizosaccharomyces pombe. , 2005, FEMS yeast research.

[14]  K. R. Marshall,et al.  P450 BM3: the very model of a modern flavocytochrome. , 2002, Trends in biochemical sciences.

[15]  L. Dijkhuizen,et al.  Targeted Disruption of the kstD Gene Encoding a 3-Ketosteroid Δ1-Dehydrogenase Isoenzyme ofRhodococcus erythropolis Strain SQ1 , 2000, Applied and Environmental Microbiology.

[16]  R. Schmid,et al.  Engineering Cytochrome P450 BM-3 for Oxidation of Polycyclic Aromatic Hydrocarbons , 2001, Applied and Environmental Microbiology.

[17]  L. Dijkhuizen,et al.  The Actinobacterial mce4 Locus Encodes a Steroid Transporter* , 2008, Journal of Biological Chemistry.

[18]  S. Quan,et al.  Nocardioform arsenic resistance plasmid characterization and improved Rhodococcus cloning vectors. , 1993, Plasmid.

[19]  K. Auclair,et al.  Progress towards the easier use of P450 enzymes. , 2006, Molecular bioSystems.

[20]  R. Bernhardt,et al.  A new Bacillus megaterium whole-cell catalyst for the hydroxylation of the pentacyclic triterpene 11-keto-β-boswellic acid (KBA) based on a recombinant cytochrome P450 system , 2011, Applied Microbiology and Biotechnology.

[21]  M. Donova,et al.  Microbial steroid transformations: current state and prospects , 2012, Applied Microbiology and Biotechnology.

[22]  F. Arnold,et al.  Improved product‐per‐glucose yields in P450‐dependent propane biotransformations using engineered Escherichia coli , 2011, Biotechnology and bioengineering.

[23]  S. Lütz,et al.  Challenges of steroid biotransformation with human cytochrome P450 monooxygenase CYP21 using resting cells of recombinant Schizosaccharomyces pombe. , 2010, Journal of biotechnology.

[24]  Jonathan Hughes,et al.  Application of whole cell rhodococcal biocatalysts in acrylic polymer manufacture , 1998, Antonie van Leeuwenhoek.

[25]  Hyung-Sik Kang,et al.  Surface display of heme- and diflavin-containing cytochrome P450 BM3 in Escherichia coli: a whole cell biocatalyst for oxidation. , 2010, Journal of microbiology and biotechnology.

[26]  L. Dijkhuizen,et al.  Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid Delta(1)-dehydrogenase isoenzyme. , 2002, Microbiology.

[27]  L. Dijkhuizen,et al.  Molecular and functional characterization of kshA and kshB, encoding two components of 3‐ketosteroid 9α‐hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1 , 2002, Molecular microbiology.

[28]  R. Bernhardt,et al.  Cytochromes P450 as versatile biocatalysts. , 2006, Journal of biotechnology.

[29]  S. D. Beer,et al.  Regio‐ and Stereoselective Hydroxylation of Optically Active α‐Ionone Enantiomers by Engineered Cytochrome P450 BM3 Mutants , 2012 .

[30]  L. Dijkhuizen,et al.  Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. , 2004, Current opinion in microbiology.

[31]  Nico P E Vermeulen,et al.  Determination and identification of estrogenic compounds generated with biosynthetic enzymes using hyphenated screening assays, high resolution mass spectrometry and off-line NMR. , 2010, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[32]  K. A. White,et al.  A survey of the high-field 1H NMR spectra of the steroid hormones, their hydroxylated derivatives, and related compounds , 1990 .

[33]  P. Swart,et al.  Functional expression and characterisation of human cytochrome P45017alpha in Pichia pastoris. , 2007, Journal of biotechnology.

[34]  A. Sinskey,et al.  Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol , 2006, Applied Microbiology and Biotechnology.

[35]  Sakayu Shimizu,et al.  Whole organism biocatalysis. , 2005, Current opinion in chemical biology.

[36]  D. Žigon,et al.  Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application. , 2010, Journal of biotechnology.

[37]  S. Bell,et al.  P450(BM3) (CYP102A1): connecting the dots. , 2012, Chemical Society reviews.

[38]  P. Swart,et al.  Functional expression and characterisation of human cytochrome P45017α in Pichia pastoris , 2007 .

[39]  Junhua Tao,et al.  Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale , 2008 .

[40]  L. Dijkhuizen,et al.  Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Delta1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. , 2001, FEMS microbiology letters.

[41]  Christopher M. Clouthier,et al.  Expanding the Organic Toolbox: A Guide to Integrating Biocatalysis in Synthesis , 2012 .

[42]  Whole-cell hydroxylation of n-octane by Escherichia coli strains expressing the CYP153A6 operon , 2012, Applied Microbiology and Biotechnology.

[43]  Andreas Schmid,et al.  Heme-iron oxygenases: powerful industrial biocatalysts? , 2008, Current opinion in chemical biology.

[44]  Manfred T Reetz,et al.  Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution , 2011, Nature Chemistry.

[45]  Development of a whole-cell biocatalyst co-expressing P450 monooxygenase and glucose dehydrogenase for synthesis of epoxyhexane , 2012, Applied Microbiology and Biotechnology.

[46]  M. Pátek,et al.  Biodegradation potential of the genus Rhodococcus. , 2009, Environment international.

[47]  J. Schrader,et al.  P450BM-3-catalyzed whole-cell biotransformation of α-pinene with recombinant Escherichia coli in an aqueous–organic two-phase system , 2009, Applied Microbiology and Biotechnology.

[48]  Kamila Zofia Du Plessis-Rosloniec Steroid transformation by Rhodococcus strains and bacterial cytochrome P450 enzymes , 2011 .

[49]  Frank Hollmann,et al.  Enzyme-mediated oxidations for the chemist , 2011 .