Corrosion in Nuclear Fuel Reprocessing Plants: Corrosion in Boiling Nitric Acid

[1]  C. Kato,et al.  Effect of re-oxidation rate of additive cations on corrosion rate of stainless steel in boiling nitric acid solution , 2016, Journal of Nuclear Science and Technology.

[2]  C. Kato,et al.  The effect of crystal textures on the anodic oxidization of zirconium in a boiling nitric acid solution , 2016 .

[3]  K. Ishii,et al.  Effect of nitrate on corrosion of austenitic stainless steel in boiling nitric acid solution containing chromium ions , 2016 .

[4]  O. Kato,et al.  ICONE23-1656 STUDY OF THE CORROSION RESISTANCE AND THE MECHANICAL PROPERTIES OF R-SUS310ULC EHP^[○!R] , 2015 .

[5]  B. Tribollet,et al.  Mechanism of Nitric Acid Reduction and Kinetic Modelling , 2014 .

[6]  K. Ishii,et al.  Redox behavior of chromium on the corrosion of austenitic stainless steel (R-SUS304ULC) in 8 M nitric acid solution , 2014 .

[7]  T. Matsumura,et al.  Spectroscopic study of Np(V) oxidation to Np(VI) in 3 mol/dm3 nitric acid at elevated temperatures , 2014 .

[8]  C. Kato,et al.  Effects of Oxidation States of Np on Polarization Curve of Stainless Steel in Boiling 3M-HNO3 , 2013 .

[9]  C. Kato,et al.  Stress Corrosion Cracking Behavior of Zirconium in Boiling Nitric Acid Solutions at Oxide Formation Potentials , 2013 .

[10]  Y. Morita,et al.  Spectroscopic study of Pu(IV) oxidation to Pu(VI) in 3 mol/dm3 nitric acid at 373 K , 2012 .

[11]  P. Fauvet Corrosion issues in nuclear fuel reprocessing plants , 2012 .

[12]  C. Kato,et al.  Effect of Re-oxization Rate of Chromium and Vanadium Ions on Corrosion Rate of Stainless Steel in Boiling Nitric Acid Solutions , 2010 .

[13]  K. Kiuchi,et al.  Correlation between Intergranular Corrosion and Impurities of Extra High Purity Austenitic Stainless Steels , 2010 .

[14]  C. Kato,et al.  Intergranular Corrosion for Extra High Purity Austenitic Stainless Steel in Boiling Nitric Acid with Cr(VI) , 2009 .

[15]  C. Kato,et al.  Corrosion Phenomenon of Stainless Steel in Boiling Nitric Acid Solution Using Large-Scale Mock-Up of Reduced Pressurized Evaporator , 2008 .

[16]  Masahiro Yamamoto,et al.  Corrosion Behavior of Stainless Steel in Nitric Acid Solutions Including Neptunium , 2008 .

[17]  J. E. Truman Factors affecting the testing of stainless steels in boiling concentrated nitric acid , 2007 .

[18]  T. Koizumi,et al.  Effect of Chemical Species in Spent Nuclear Fuel Reprocessing Solution on Corrosion of Austenitic Stainless Steel , 2005 .

[19]  P. De,et al.  High corrosion resistant Ti–5%Ta–1.8%Nb alloy for fuel reprocessing application , 2003 .

[20]  C. Kato,et al.  Thermodynamic Study on Redox Reactions of Boiling Nitric Acid Solutions , 2003 .

[21]  Masaya Yano,et al.  Effects of a Heat-transfer on Corrosion of Zirconium in a Boiling Nitric Acid Solution , 2003 .

[22]  M. Takeuchi,et al.  Calculation of HNO2 Concentration from Redox Potential in HNO3-H2O System as an Aid to Understanding the Cathodic Reaction of Nitric Acid Corrosion , 2002 .

[23]  M. Takeuchi,et al.  Effect of NOx gases on corrosion of stainless stell in hot nitric acid solutions , 2002 .

[24]  T. Honda,et al.  Effects of Iron (III) Ions on Corrosion of Stainless Steel in Concentrated Nitric Acid Solutions at High Temperature , 2002 .

[25]  F. Wada Improvement of Reliability in Nuclear Fuel Reprocessing Plant , 1999 .

[26]  G. Santarini,et al.  Equilibria Between Gas and Liquid Phases for Concentrated Aqueous Solutions of Nitric Acid , 1999 .

[27]  R. Armstrong,et al.  Effect of dissolved chromium species on the corrosionof stainless steel in nitric acid , 1998 .

[28]  M. Takeuchi,et al.  Corrosion Behavior of Stainless Steel in Nitric Acid Solution under Gamma-ray Irradiation , 1998 .

[29]  M. Takeuchi,et al.  Gamma-ray Irradiation Effects on Corrosion Rates of Stainless Steel in Boiling Nitric Acid Containing Ionic Additives , 1998 .

[30]  M. Takeuchi,et al.  Gamma-ray irradiation effect on corrosion rates of stainless steel, Ti and Ti-5Ta in boiling 9N nitric acid , 1996 .

[31]  H. Nagano,et al.  Corrosion resistance of zirconium and zirconium-titanium alloy in hot nitric acid , 1995 .

[32]  G. Purdy,et al.  Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation , 1995 .

[33]  H. Igarashi,et al.  Removal of Heat-Generating Nuclides from High-Level Liquid Wastes through Mixed Zeolite Columns , 1993 .

[34]  H. Nagano,et al.  Corrosion Environment and Corrosion Resistant Materials for Nuclear Fuel Reprocessing Plants. , 1992 .

[35]  Shiro Kobayashi,et al.  Corrosion Behaviors and Electrochemical Properties of Stainless Steel in Boiling Nitric Acid Solution Containing Metal Species , 1990 .

[36]  T. Kawano,et al.  Corrosion behavior of stainless steels under heat transfer condition in simulated solution of dissolver for FBR fuel reprocessing. , 1989 .

[37]  M. N. Hughes,et al.  Stoicheiometric and nitrogen-15 labelling studies on the hyponitrous acid–nitrous acid reaction , 1989 .

[38]  H. Nagano,et al.  Formation Mechanism of Cr6+ Ions and their Accelerating Effect on the Corrosion of Stainless Steel in High Temperature Concentrated Nitric Acid , 1987 .

[39]  W. K. Boyd,et al.  Stress corrosion cracking of zirconium in nitric acid , 1981 .

[40]  F. J. Miner,et al.  Radiolysis of nitric acid solution : L.E.T. effects , 1970 .

[41]  J. Armijo Impurity adsorption and intergranular corrosion of austenitic stainless steel in boiling HNO3-K2Cr2O7 solutions , 1967 .

[42]  H. Coriou,et al.  Aspect electrochimique de la corrosion d'aciers inoxydables austenitiques en milieu nitrique et en presence de chrome hexavalent☆ , 1961 .

[43]  W. Kay,et al.  The Physicochemical Properties of Pure Nitric Acid. , 1960 .

[44]  A. Fisher,et al.  Laboratory Methods for Determining Corrosion Rates Under Heat Flux Conditions , 1959 .

[45]  K. J. Vetter Über den Einstellungsmechanismus des HNO2/HNO3 Redoxpotentials , 1944 .