On ω-Lie superalgebras

Let [Formula: see text] be a finite-dimensional vector space over a field [Formula: see text] of characteristic zero, [Formula: see text] an anti-commutative product on [Formula: see text] and [Formula: see text] a bilinear form on [Formula: see text]. The triple [Formula: see text] is called an [Formula: see text]-Lie algebra if [Formula: see text] (graded [Formula: see text]-Jacobi identity) for all [Formula: see text] In this paper, we introduce the notion of an [Formula: see text]-Lie superalgebra. We study elementary properties and representations of [Formula: see text]-Lie superalgebras. We classify all 3- and 4-dimensional [Formula: see text]-Lie superalgebras over the field of complex numbers.