Rotorcraft parameter estimation using radial basis function neural network

Increased emphasis on rotorcraft performance and operational capabilities has resulted in accurate computation of aerodynamic stability and control parameters. System identification is one such tool in which the model structure and parameters such as aerodynamic stability and control derivatives are derived. In the present work, the rotorcraft aerodynamic parameters are computed using radial basis function neural networks (RBFN) in the presence of both state and measurement noise. The effect of presence of outliers in the data is also considered. RBFN is found to give superior results compared to finite difference derivatives for noisy data.

[1]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[2]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[3]  M Bozzini,et al.  Numerical differentiation of 2D functions from noisy data , 2003 .

[4]  Yong Duan,et al.  A note on the meshless method using radial basis functions , 2008, Comput. Math. Appl..

[5]  J. A. Molusis Analytical study to define a helicopter stability derivative extraction method, volume 1 , 1973 .

[6]  Chuangxia Huang,et al.  Mean square exponential stability of stochastic recurrent neural networks with time-varying delays , 2008, Comput. Math. Appl..

[7]  Ranjan Ganguli,et al.  Structural damage detection in a helicopter rotor blade using radial basis function neural networks , 2003 .

[8]  Marilena D. Pavel,et al.  On the Necessary Degrees of Freedom for Helicopter and Wind Turbine Low-Frequency Mode Modeling , 2001 .

[9]  Inderjit Chopra,et al.  Detection of Helicopter Rotor System Simulated Faults Using Neural Networks , 1996 .

[10]  Raymond S. Hansen,et al.  Toward a better understanding of helicopter stability derivatives , 1984 .

[11]  J. Victor Lebacqz,et al.  Helicopter mathematical models and control law development for handling qualities research , 1988 .

[12]  M. A. Mnich,et al.  Minimum-complexity helicopter simulation math model , 1988 .

[13]  Sundaram Suresh,et al.  Identification of crack location and depth in a cantilever beam using a modular neural network approach , 2004 .

[14]  Alaeddin Malek,et al.  Novel artificial neural network with simulation aspects for solving linear and quadratic programming problems , 2007, Comput. Math. Appl..

[15]  G. D. Padfield,et al.  Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modelling , 1995 .

[16]  Chi-Bin Cheng,et al.  Financial distress prediction by a radial basis function network with logit analysis learning , 2006, Comput. Math. Appl..

[17]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[18]  Ravindra Jategaonkar,et al.  Aerodynamic Modeling and System Identification from Flight Data , 2005, Journal of Aerospace Sciences and Technologies.

[19]  Combining the radial basis function eulerian and Lagrangian schemes with geostatistics for modeling of radionuclide migration through the geosphere , 2004 .

[20]  A. Chattopadhyay,et al.  A multidisciplinary optimization using semi-analytical sensitivity analysis procedure and multilevel decomposition , 1995 .

[21]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[22]  Ajoy Kanti Ghosh,et al.  Estimation of Aircraft Lateral-Directional Parameters Using Neural Networks , 1998 .

[23]  Dimitris K. Tasoulis,et al.  Determining the number of real roots of polynomials through neural networks , 2006, Comput. Math. Appl..

[24]  Mario Innocenti,et al.  Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modeling , 1999 .

[25]  Raymond W. Prouty,et al.  Helicopter performance, stability, and control , 1986 .

[26]  Tobin A. Driscoll,et al.  Eigenvalue stability of radial basis function discretizations for time-dependent problems , 2006, Comput. Math. Appl..

[27]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[28]  Chao-Jung Cheng,et al.  Robust control of a class of neural networks with bounded uncertainties and time-varying delays , 2008, Comput. Math. Appl..

[29]  Prem Kalra,et al.  Two new techniques for aircraft parameter estimation using neural networks , 1998, The Aeronautical Journal (1968).

[30]  P. Blonda,et al.  RBF two-stage learning networks exploiting supervised data in the selection of hidden unit parameters: an application to SAR data classification , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[31]  R. T. N. Chen,et al.  Effects of primary rotor parameters on flapping dynamics , 1980 .

[32]  T. R. Mccarthy,et al.  A multidisciplinary optimization approach for vibration reduction in helicopter rotor blades , 1993 .