Efficient rendering of heterogeneous polydisperse granular media

We address the challenge of efficiently rendering massive assemblies of grains within a forward path-tracing framework. Previous approaches exist for accelerating high-order scattering for a limited, and static, set of granular materials, often requiring scene-dependent precomputation. We significantly expand the admissible regime of granular materials by considering heterogeneous and dynamic granular mixtures with spatially varying grain concentrations, pack rates, and sizes. Our method supports both procedurally generated grain assemblies and dynamic assemblies authored in off-the-shelf particle simulation tools. The key to our speedup lies in two complementary aggregate scattering approximations which we introduced to jointly accelerate construction of short and long light paths. For low-order scattering, we accelerate path construction using novel grain scattering distribution functions (GSDF) which aggregate intra-grain light transport while retaining important grain-level structure. For high-order scattering, we extend prior work on shell transport functions (STF) to support dynamic, heterogeneous mixtures of grains with varying sizes. We do this without a scene-dependent precomputation and show how this can also be used to accelerate light transport in arbitrary continuous heterogeneous media. Our multi-scale rendering automatically minimizes the usage of explicit path tracing to only the first grain along a light path, or can avoid it completely, when appropriate, by switching to our aggregate transport approximations. We demonstrate our technique on animated scenes containing heterogeneous mixtures of various types of grains that could not previously be rendered efficiently. We also compare to previous work on a simpler class of granular assemblies, reporting significant computation savings, often yielding higher accuracy results.

[1]  Kenny Mitchell,et al.  Modular Radiance Transfer , 2011, ACM Trans. Graph..

[2]  Martin Hill,et al.  Eurographics Symposium on Rendering 2011 an Energy-conserving Hair Reflectance Model , 2022 .

[3]  Steve Marschner,et al.  Discrete stochastic microfacet models , 2014, ACM Trans. Graph..

[4]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[5]  Steve Marschner,et al.  Importance sampling for physically-based hair fiber models , 2013, SIGGRAPH ASIA Technical Briefs.

[6]  Qinghe Li,et al.  Light scattering of semitransparent media , 2008 .

[7]  Pat Hanrahan,et al.  Monte Carlo evaluation of non-linear scattering equations for subsurface reflection , 2000, SIGGRAPH.

[8]  James T. Kajiya,et al.  Rendering fur with three dimensional textures , 1989, SIGGRAPH.

[9]  Djamchid Ghazanfarpour,et al.  Modeling and Rendering of Heterogeneous Granular Materials: Granite Application , 2007 .

[10]  Ozawa Sadahiro,et al.  ”Multi‐Scale Modeling and Rendering of Granular Materials”の実装報告 , 2016 .

[11]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[12]  Eugene d'Eon,et al.  A quantized-diffusion model for rendering translucent materials , 2011, ACM Trans. Graph..

[13]  Francisco J. Serón,et al.  Physically-based simulation of rainbows , 2012, TOGS.

[14]  Peter Shirley,et al.  A microfacet-based BRDF generator , 2000, SIGGRAPH.

[15]  Jos Stam,et al.  Multiple Scattering as a Diffusion Process , 1995, Rendering Techniques.

[16]  Steve Marschner,et al.  Eurographics Symposium on Rendering (2007) Jan Kautz and Sumanta Pattanaik (Editors) Abstract Rendering Discrete Random Media Using Precomputed Scattering Solutions , 2022 .

[17]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[18]  Monica L. Skoge,et al.  Packing hyperspheres in high-dimensional Euclidean spaces. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Arthur W. Rose,et al.  Porous media: Fluid transport and pore structure (2nd Ed.) , 1993 .

[20]  Harry Shum,et al.  Modeling hair from multiple views , 2005, ACM Trans. Graph..

[21]  GrossMarkus,et al.  Efficient rendering of heterogeneous polydisperse granular media , 2016 .

[22]  Reinhard Klein,et al.  A Volumetric Approach to Predictive Rendering of Fabrics , 2011, EGSR '11.

[23]  M. Dixmier,et al.  Une nouvelle description des empilements aléatoires et des fluides denses , 1978 .

[24]  Henrik Wann Jensen,et al.  A rapid hierarchical rendering technique for translucent materials , 2005, SIGGRAPH Courses.

[25]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[26]  Yves D. Willems,et al.  Rendering Participating Media with Bidirectional Path Tracing , 1996, Rendering Techniques.

[27]  J. Parlange Porous Media: Fluid Transport and Pore Structure , 1981 .

[28]  Gladimir V. G. Baranoski,et al.  Simulating the appearance of sandy landscapes , 2010, Comput. Graph..

[29]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[30]  Fabio Pellacini,et al.  ISHair: Importance Sampling for Hair Scattering , 2012, Comput. Graph. Forum.

[31]  Fabio Pellacini,et al.  ISHair: Importance Sampling for Hair Scattering , 2012, Comput. Graph. Forum.

[32]  Steve Marschner,et al.  A comprehensive framework for rendering layered materials , 2014, ACM Trans. Graph..

[33]  S. Torquato,et al.  Chord-length distribution function for two-phase random media. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  Fabrice Neyret,et al.  Modeling, Animating, and Rendering Complex Scenes Using Volumetric Textures , 1998, IEEE Trans. Vis. Comput. Graph..

[35]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[36]  Christophe Hery,et al.  Importance Sampling of Reflection from Hair Fibers , 2012 .

[37]  Shuang Zhao,et al.  Modular flux transfer , 2013, ACM Trans. Graph..

[38]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[39]  Steve Marschner,et al.  Rendering glints on high-resolution normal-mapped specular surfaces , 2014, ACM Trans. Graph..

[40]  Carol O'Sullivan,et al.  Accelerated Light Propagation Through Participating Media , 2007, VG@Eurographics.

[41]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[42]  H. Makse,et al.  A phase diagram for jammed matter , 2008, Nature.

[43]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[44]  Kenneth E. Torrance,et al.  A hybrid monte carlo method for accurate and efficient subsurface scattering , 2005, EGSR '05.

[45]  Arno Zinke,et al.  Light Scattering from Filaments , 2007, IEEE Transactions on Visualization and Computer Graphics.

[46]  G. Baranoski,et al.  A novel approach for simulating light interaction with particulate materials: application to the modeling of sand spectral properties. , 2007, Optics express.

[47]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[48]  Steve Marschner,et al.  Multi-scale modeling and rendering of granular materials , 2015, ACM Trans. Graph..

[49]  Steve Marschner,et al.  Light scattering from human hair fibers , 2003, ACM Trans. Graph..

[50]  Steve Marschner,et al.  Capturing hair assemblies fiber by fiber , 2009, ACM Trans. Graph..

[51]  Shuang Zhao,et al.  High-order similarity relations in radiative transfer , 2014, ACM Trans. Graph..

[52]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[53]  Per H. Christensen,et al.  Photon Beam Diffusion: A Hybrid Monte Carlo Method for Subsurface Scattering , 2013, Comput. Graph. Forum.

[54]  Pieter Peers,et al.  A compact factored representation of heterogeneous subsurface scattering , 2006, ACM Trans. Graph..

[55]  Stephen Lin,et al.  Photorealistic rendering of knitwear using the lumislice , 2001, SIGGRAPH.

[56]  Henrik Wann Jensen,et al.  A practical microcylinder appearance model for cloth rendering , 2013, TOGS.

[57]  Ravi Ramamoorthi,et al.  Physically-accurate fur reflectance , 2015, ACM Trans. Graph..