Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV Luminosity Functions at $z \sim 4-7$ Derived with the Half-Million Dropouts on the 100 deg$^2$ Sky
暂无分享,去创建一个
Mohammad Akhlaghi | Satoshi Miyazaki | Yoshiaki Taniguchi | Jean Coupon | Yoshiaki Ono | Michael Rauch | Nobunari Kashikawa | Masamune Oguri | Yutaka Komiyama | Kazuhiro Shimasaku | Masami Ouchi | Takatoshi Shibuya | Shiang-Yu Wang | Masayuki Akiyama | Marcin Sawicki | Jun Toshikawa | Yuichi Harikane | John Silverman | J. Silverman | Masayuki Tanaka | T. Nagao | J. Coupon | M. Oguri | S. Miyazaki | K. Shimasaku | Lihwai Lin | N. Kashikawa | M. Akiyama | Y. Taniguchi | Y. Komiyama | Shiang‐Yu Wang | M. Ouchi | J. Toshikawa | C. Willott | M. Akhlaghi | Y. Matsuoka | Y. Harikane | Y. Ono | M. Rauch | K. Nakajima | A. Konno | Lihwai Lin | Suraphong Yuma | Masayuki Tanaka | M. Sawicki | T. Shibuya | S. Yuma | Tohru Nagao | Kimihiko Nakajima | Chris Willott | Akira Konno | Yoshiki Matsuoka
[1] K. Aoki,et al. Differential evolution of the UV luminosity function of Lyman break galaxies from z ∼ 5 to 3* , 2007, astro-ph/0701841.
[2] S. Okamura,et al. The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.
[3] M. Dickinson,et al. Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3* , 1996 .
[4] D. Schlegel,et al. Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.
[5] S. M. Fall,et al. The Morphological Diversities among Star-forming Galaxies at High Redshifts in the Great Observatories Origins Deep Survey , 2006, astro-ph/0606696.
[6] Xiaohui Fan,et al. THE FINAL SDSS HIGH-REDSHIFT QUASAR SAMPLE OF 52 QUASARS AT z > 5.7 , 2016, 1610.05369.
[7] M. Salvato,et al. CONSTRAINTS ON THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z ∼ 5 IN THE COSMOS FIELD , 2012, 1207.1515.
[8] Ryan P. Mallery,et al. Lyα EMISSION FROM HIGH-REDSHIFT SOURCES IN COSMOS , 2012, 1208.6031.
[10] Z. Cai,et al. A SURVEY OF LUMINOUS HIGH-REDSHIFT QUASARS WITH SDSS AND WISE. I. TARGET SELECTION AND OPTICAL SPECTROSCOPY , 2016, The Astrophysical Journal.
[11] S. Okamura,et al. The Subaru/XMM-Newton Deep Survey (SXDS). II. Optical Imaging and Photometric Catalogs , 2008, 0801.4017.
[12] J. B. Oke,et al. Secondary standard stars for absolute spectrophotometry , 1983 .
[13] J. Silverman,et al. The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey , 2017, 1704.05996.
[14] J. Binney. The physics of dissipational galaxy formation. , 1977 .
[15] H. Hildebrandt,et al. The UV galaxy luminosity function at z = 3–5 from the CFHT Legacy Survey Deep fields , 2010, 1009.0758.
[16] N. Gnedin. COSMIC REIONIZATION ON COMPUTERS: THE FAINT END OF THE GALAXY LUMINOSITY FUNCTION , 2016, 1603.07729.
[17] Linhua Jiang,et al. Discovery of 16 New z ∼ 5.5 Quasars: Filling in the Redshift Gap of Quasar Color Selection , 2017, 1703.03526.
[18] C. C. Steidel,et al. Multiwavelength Observations of Dusty Star Formation at Low and High Redshift , 2000, astro-ph/0001126.
[19] P. Marshall,et al. CORRECTING THE z ∼ 8 GALAXY LUMINOSITY FUNCTION FOR GRAVITATIONAL LENSING MAGNIFICATION BIAS , 2015, 1502.03795.
[20] J. E. Gunn,et al. Stellar spectrophotometric atlas, wavelengths from 3130 to 10800 A , 1983 .
[21] B. Garilli,et al. THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE , 2009 .
[22] Robert Armstrong,et al. GalSim: The modular galaxy image simulation toolkit , 2014, Astron. Comput..
[23] S. Bamford,et al. Galaxy And Mass Assembly (GAMA): ugrizYJHK Sérsic luminosity functions and the cosmic spectral energy distribution by Hubble type , 2014, 1401.1817.
[24] B. Garilli,et al. Lyα Emitters at Redshift 5.7 in the COSMOS Field , 2007, astro-ph/0702458.
[25] S. Finkelstein,et al. The Minimum Halo Mass for Star Formation at z = 6 - 8 , 2016, 1609.06348.
[26] S. Faber,et al. Velocity dispersions and mass-to-light ratios for elliptical galaxies. , 1976 .
[27] V. A. Bruce,et al. AN EXPONENTIAL DECLINE AT THE BRIGHT END OF THE z = 6 GALAXY LUMINOSITY FUNCTION , 2012, 1202.5330.
[28] Philip J. Tait,et al. Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7 < z ≤ 6.8 , 2017, 1704.05854.
[29] F. Mannucci,et al. Evidence of a fast evolution of the UV luminosity function beyond redshift 6 from a deep HAWK-I survey of the GOODS-S field , 2009, 0909.2853.
[30] D. Weedman,et al. Colors and magnitudes predicted for high redshift galaxies , 1980 .
[31] T. Nagao,et al. Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program strategy and clustering properties of ∼2000 Lyα emitters at z = 6–7 over the 0.3–0.5 Gpc2 survey area , 2017, 1704.07455.
[32] Satoshi Miyazaki,et al. GOLDRUSH - II. Clustering of galaxies at z ∼ 4–6 revealed with the half-million dropouts over the 100 deg2 area corresponding to 1 Gpc3 , 2017, 1704.06535.
[33] Satoshi Miyazaki,et al. The bright-star masks for the HSC-SSP survey , 2017, 1705.00622.
[34] Walter A. Siegmund,et al. The Second Data Release of the Sloan Digital Sky Survey , 2004 .
[35] E. Salpeter. The Luminosity function and stellar evolution , 1955 .
[36] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[37] A. Loeb,et al. CONSTRAINING THE MINIMUM MASS OF HIGH-REDSHIFT GALAXIES AND THEIR CONTRIBUTION TO THE IONIZATION STATE OF THE INTERGALACTIC MEDIUM , 2010, 1010.2260.
[38] E. Scannapieco,et al. Quasar Feedback: The Missing Link in Structure Formation , 2004, astro-ph/0401087.
[39] T. Heckman,et al. Internal Absorption and the Luminosity of Disk Galaxies , 1996 .
[40] R. Bouwens,et al. Extremely Small Sizes for Faint z ∼ 2–8 Galaxies in the Hubble Frontier Fields: A Key Input for Establishing Their Volume Density and UV Emissivity , 2016, 1608.00966.
[41] G. Kauffmann,et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.
[42] S. Finkelstein,et al. Directly Observing the Galaxies Likely Responsible for Reionization , 2016, 1604.06799.
[43] Craig Loomis,et al. Hyper Suprime-Cam , 2012, Other Conferences.
[44] R. Windhorst,et al. A distortion of very-high-redshift galaxy number counts by gravitational lensing , 2011, Nature.
[45] J. Dunlop,et al. A remarkably high fraction of strong Lyα emitters amongst luminous redshift 6.0 < z < 6.5 Lyman-break galaxies in the UKIDSS Ultra-Deep Survey , 2012 .
[46] Piero Madau,et al. Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .
[47] Cambridge,et al. ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .
[48] T. Nagao,et al. SILVERRUSH. IV. Lyα luminosity functions at z = 5.7 and 6.6 studied with ∼1300 Lyα emitters on the 14–21 deg2 sky , 2017, 1705.01222.
[49] Volker Springel,et al. The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.
[50] M. Oguri,et al. PRECISE STRONG LENSING MASS MODELING OF FOUR HUBBLE FRONTIER FIELD CLUSTERS AND A SAMPLE OF MAGNIFIED HIGH-REDSHIFT GALAXIES , 2015, 1510.06400.
[51] A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.
[52] S. Okamura,et al. Subaru Deep Survey VI. A Census of Lyman Break Galaxies at z=4 and 5 in the Subaru Deep Fields: Clustering Properties , 2003, astro-ph/0309657.
[53] R. Bouwens,et al. UV-CONTINUUM SLOPES OF >4000 z ∼ 4–8 GALAXIES FROM THE HUDF/XDF, HUDF09, ERS, CANDELS-SOUTH, AND CANDELS-NORTH FIELDS , 2013, 1306.2950.
[54] A. Mazure,et al. The VIMOS VLT Deep Survey final data release: a spectroscopic sample of 35 016 galaxies and AGN out to z ~ 6.7 selected with 17.5 ≤ iAB ≤ 24.75 , 2013, 1307.0545.
[55] H. Rix,et al. THE PAN-STARRS1 DISTANT z > 5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE , 2016, 1608.03279.
[56] J. Silk. On the fragmentation of cosmic gas clouds. I. The formation of galaxies and the first generation of stars. , 1977 .
[57] J. P. U. Fynbo,et al. Edinburgh Research Explorer Discovery of bright z 7 galaxies in the UltraVISTA survey , 2012 .
[58] D. Kelson,et al. IMACS: The Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade , 2011 .
[59] Michele Cirasuolo,et al. THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.
[60] R. Davé,et al. THE LBT BOÖTES FIELD SURVEY. I. THE REST-FRAME ULTRAVIOLET AND NEAR-INFRARED LUMINOSITY FUNCTIONS AND CLUSTERING OF BRIGHT LYMAN BREAK GALAXIES AT Z ∼ 3 , 2013, 1307.4835.
[61] Satoshi Miyazaki,et al. The on-site quality-assurance system for Hyper Suprime-Cam: OSQAH , 2018 .
[62] Mamoru Doi,et al. Lyα Emitters at z = 5.7 in the Subaru Deep Field , 2006, astro-ph/0602614.
[63] A. Eddington,et al. On a Formula for Correcting Statistics for the Effects of a known Probable Error of Observation , 1913 .
[64] Yen-Ting Lin,et al. GOLDRUSH. III. A systematic search for protoclusters at z ∼ 4 based on the >100 deg2 area , 2017, 1708.09421.
[65] M. Oguri,et al. HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5–10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION , 2014, 1408.6903.
[66] O. Fèvre,et al. The galaxy luminosity function at z ≃ 6 and evidence for rapid evolution in the bright end from z ≃ 7 to 5 , 2014, 1411.2976.
[67] J. Trump,et al. ERRATUM: “PHOTOMETRIC PROPERTIES OF Lyα EMITTERS AT z ≈ 4.86 IN THE COSMOS 2 SQUARE DEGREE FIELD” (2009, ApJ, 696, 546) , 2009, 0901.4627.
[68] J. Dunlop,et al. No evidence for a significant AGN contribution to cosmic hydrogen reionization , 2017, 1704.07750.
[69] R. Ellis,et al. A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.
[70] M. Franx,et al. STRUCTURE AND MORPHOLOGIES OF z ∼ 7–8 GALAXIES FROM ULTRA-DEEP WFC3/IR IMAGING OF THE HUBBLE ULTRA-DEEP FIELD , 2009, 0909.5183.
[71] M. Rees,et al. Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters , 1977 .
[72] P. A. Price,et al. THE PAN-STARRS 1 PHOTOMETRIC REFERENCE LADDER, RELEASE 12.01 , 2013, 1303.3634.
[73] L. Pentericci,et al. Faint AGNs at z > 4 in the CANDELS GOODS-S field: looking for contributors to the reionization of the Universe , 2015, 1502.02562.
[74] R. Bouwens,et al. The z ∼ 6 Luminosity Function Fainter than −15 mag from the Hubble Frontier Fields: The Impact of Magnification Uncertainties , 2016, 1610.00283.
[75] Kentaro Aoki,et al. FOCAS: faint object camera and spectrograph for the Subaru Telescope , 2000, Astronomical Telescopes and Instrumentation.
[76] M. Oguri,et al. THE SIZES OF z ∼ 6–8 LENSED GALAXIES FROM THE HUBBLE FRONTIER FIELDS ABELL 2744 DATA , 2014, 1410.1535.
[77] G. Bruzual,et al. Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.
[78] T. Grav,et al. PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY , 2012, 1201.2208.
[79] R. Teyssier,et al. Cosmic Dawn (CoDa): the first radiation-hydrodynamics simulation of reionization and galaxy formation in the Local Universe , 2015, 1511.00011.
[80] M. Im,et al. THE SUBARU HIGH-z QUASAR SURVEY: DISCOVERY OF FAINT z ∼ 6 QUASARS , 2014, 1410.7401.
[81] R. J. Wainscoat,et al. THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.
[82] Song Huang,et al. The Hyper Suprime-Cam Software Pipeline , 2017, 1705.06766.
[83] H. F. Erguson,et al. THE MORPHOLOGICAL DIVERSITIES AMONG STAR-FORMING GALAXIES AT HIGH REDSHIFTS IN THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY , 2008 .
[84] The End of the Reionization Epoch Probed by Lyα Emitters at z = 6.5 in the Subaru Deep Field* ** , 2006, astro-ph/0604149.
[85] D. Stark. Galaxies in the First Billion Years After the Big Bang , 2016 .
[86] J. Kneib,et al. ARE ULTRA-FAINT GALAXIES AT z = 6–8 RESPONSIBLE FOR COSMIC REIONIZATION? COMBINED CONSTRAINTS FROM THE HUBBLE FRONTIER FIELDS CLUSTERS AND PARALLELS , 2015, 1509.06764.
[87] M. Sawicki,et al. Keck Deep Fields. II. The Ultraviolet Galaxy Luminosity Function at z ~ 4, 3, and 2* , 2005, astro-ph/0507519.
[88] Michele Cirasuolo,et al. EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.3869.
[89] J. Dunlop,et al. Unveiling the nature of bright z ~ 7 galaxies with the Hubble Space Telescope , 2016, 1605.05325.
[90] Nimish Hathi,et al. THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.
[91] Masami Ouchi,et al. MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. I. SIZE EVOLUTION , 2015, 1503.07481.
[92] K. Nagamine,et al. IMPACT OF H2-BASED STAR FORMATION MODEL ON THE z ⩾ 6 LUMINOSITY FUNCTION AND THE IONIZING PHOTON BUDGET FOR REIONIZATION , 2013, 1301.5270.
[93] Mattia Fumagalli,et al. THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.
[94] S. Bamford,et al. Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions , 2011, 1111.0166.
[95] P. Schechter. An analytic expression for the luminosity function for galaxies , 1976 .
[96] R. Bouwens,et al. The impact of strong gravitational lensing on observed Lyman-break galaxy numbers at 4 ≤ z ≤ 8 in the GOODS and the XDF blank fields , 2015, 1502.03887.
[97] Mauro Giavalisco,et al. Lyman-Break Galaxies , 2002 .
[98] R. Bouwens,et al. THE EVOLUTION OF MASS–SIZE RELATION FOR LYMAN BREAK GALAXIES FROM z = 1 to z = 7 , 2012, 1207.6634.
[99] J. Dunlop,et al. Non-parametric analysis of the rest-frame UV sizes and morphological disturbance amongst L* galaxies at 4 , 2014, 1409.1832.
[100] Paul W. Angel,et al. Dark-ages reionization and galaxy formation simulation – IV. UV luminosity functions of high-redshift galaxies , 2015, 1512.00563.
[101] R. McLure,et al. THE CANADA–FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6 , 2009, 0912.0281.
[102] A. Dekel,et al. METALLICITY-DEPENDENT QUENCHING OF STAR FORMATION AT HIGH REDSHIFT IN SMALL GALAXIES , 2011, 1106.0301.
[103] S. Okamura,et al. Deep Spectroscopy of Systematically Surveyed Extended Lyα Sources at z ~ 3-5 , 2007, 0705.1494.
[104] S. Okamura,et al. STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.
[105] J. Binney. On the origin of the galaxy luminosity function , 2003, astro-ph/0308172.
[106] J. Dunlop,et al. The z = 9-10 galaxy population in the Hubble Frontier Fields and CLASH surveys: the z = 9 luminosity function and further evidence for a smooth decline in ultraviolet luminosity density at z≥ 8 , 2016, 1602.05199.
[107] L. Waerbeke,et al. CARS: the CFHTLS-Archive-Research Survey - II. Weighing dark matter halos of Lyman-break galaxies at z = 3–5 , 2009, 0903.3951.
[108] Philip J. Tait,et al. SUBARU HIGH-z EXPLORATION OF LOW-LUMINOSITY QUASARS (SHELLQs). I. DISCOVERY OF 15 QUASARS AND BRIGHT GALAXIES AT 5.7 < z < 6.9 , 2016, 1603.02281.
[109] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[110] N. Gehrels. Confidence limits for small numbers of events in astrophysical data , 1986 .
[111] M. Franx,et al. UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.
[112] et al,et al. Near-Infrared Photometry and Spectroscopy of L and T Dwarfs: The Effects of Temperature, Clouds, and Gravity , 2004, astro-ph/0402451.
[113] O. Fèvre,et al. HST Imaging of the Brightest z ∼ 8–9 Galaxies from UltraVISTA: The Extreme Bright End of the UV Luminosity Function , 2017, 1706.04613.
[114] M. Salvato,et al. EVOLUTION OF THE QUASAR LUMINOSITY FUNCTION OVER 3 < z < 5 IN THE COSMOS SURVEY FIELD , 2012, 1207.2154.
[115] Satoshi Miyazaki,et al. Characterization and Photometric Performance of the Hyper Suprime-Cam Software Pipeline , 2017, 1705.01599.
[116] Garth D. Illingworth,et al. z ~ 7-10 Galaxies in the HUDF and GOODS Fields: UV Luminosity Functions , 2008, 0803.0548.
[117] B. Garilli,et al. Size evolution of star-forming galaxies with 2 , 2016, 1602.01840.
[118] T. Nagao,et al. REVISITING THE COMPLETENESS AND LUMINOSITY FUNCTION IN HIGH-REDSHIFT LOW-LUMINOSITY QUASAR SURVEYS , 2016, 1610.01619.
[119] Oxford,et al. Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.
[120] M. Oguri,et al. PROBABILITY DISTRIBUTION FUNCTIONS OF COSMOLOGICAL LENSING: CONVERGENCE, SHEAR, AND MAGNIFICATION , 2011, 1106.3823.
[121] J. Dunlop,et al. THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS z ∼ 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.4819.
[122] B. O’Shea,et al. PROBING THE ULTRAVIOLET LUMINOSITY FUNCTION OF THE EARLIEST GALAXIES WITH THE RENAISSANCE SIMULATIONS , 2015, 1503.01110.
[123] J. Dunlop,et al. The luminosity function, halo masses and stellar masses of luminous Lyman-break galaxies at redshifts 5 < z < 6 , 2008, 0805.1335.
[124] Oswald H. W. Siegmund,et al. THE STAR FORMATION RATE FUNCTION OF THE LOCAL UNIVERSE , 2005 .
[125] A. Omont,et al. EDDINGTON-LIMITED ACCRETION AND THE BLACK HOLE MASS FUNCTION AT REDSHIFT 6 , 2010, 1006.1342.
[126] A. Myers,et al. THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82 , 2012, 1212.4493.
[127] S.Paltani,et al. The VIMOS Ultra Deep Survey first data release: Spectra and spectroscopic redshifts of 698 objects up to zspec ~ 6 in CANDELS , 2016, 1602.01842.
[128] S. Djorgovski,et al. THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z ∼ 4: IMPLICATIONS FOR IONIZATION OF THE INTERGALACTIC MEDIUM AND COSMIC DOWNSIZING , 2009, 0912.2799.
[129] Daniel Masters,et al. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1 , 2017, 1704.06665.
[130] I. Hook,et al. The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .
[131] A. Myers,et al. The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release , 2016, 1608.06483.
[132] Yukiko Kamata,et al. Hyper Suprime-Cam: Camera dewar design , 2018 .
[133] Masayuki Tanaka,et al. A SYSTEMATIC SURVEY OF PROTOCLUSTERS AT z ∼ 3–6 IN THE CFHTLS DEEP FIELDS , 2016, 1605.01439.
[134] Masayuki Tanaka,et al. SILVERRUSH. III. Deep Optical and Near-Infrared Spectroscopy for Lya and UV-Nebular Lines of Bright Lya Emitters at z=6-7 , 2017, 1705.00733.
[135] Durham,et al. What Shapes the Luminosity Function of Galaxies? , 2003, astro-ph/0302450.
[136] Satoshi Miyazaki,et al. Photometric Redshifts for Hyper Suprime-Cam Subaru Strategic Program Data Release 1 , 2017, 1704.05988.
[137] S. M. Fall,et al. LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION , 2009, 0908.3191.
[138] S. Okamura,et al. Luminosity Functions of Lyman Break Galaxies at z ~ 4 and z ~ 5 in the Subaru Deep Field , 2006, astro-ph/0608512.
[139] Number Density of Bright Lyman-Break Galaxies at z〜6 in the Subaru Deep Field , 2005, astro-ph/0504373.
[140] D. Schiminovich,et al. The First Release COSMOS Optical and Near-IR Data and Catalog , 2007, 0704.2430.
[141] P. Madau,et al. DWARF GALAXY FORMATION WITH H2-REGULATED STAR FORMATION. II. GAS-RICH DARK GALAXIES AT REDSHIFT 2.5 , 2013 .
[142] M. Norman,et al. The birth of a galaxy – III. Propelling reionization with the faintest galaxies , 2014, 1403.6123.
[143] M. Stiavelli,et al. Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High-z Surveys , 2007, 0712.0398.