Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV Luminosity Functions at $z \sim 4-7$ Derived with the Half-Million Dropouts on the 100 deg$^2$ Sky

We study the UV luminosity functions (LFs) at $z\sim 4$, $5$, $6,$ and $7$ based on the deep large-area optical images taken by the Hyper Suprime-Cam (HSC) Subaru strategic program (SSP). On the 100 deg$^2$ sky of the HSC SSP data available to date, we make enormous samples consisting of a total of 579,565 dropout candidates at $z\sim 4-7$ by the standard color selection technique, 358 out of which are spectroscopically confirmed by our follow-up spectroscopy and other studies. We obtain UV LFs at $z \sim 4-7$ that span a very wide UV luminosity range of $\sim 0.002 - 100 \, L_{\rm UV}^\ast$ ($-26 2 \sigma$ significance, and require either double power-law functions or modified Schechter functions that consider a magnification bias due to gravitational lensing.

[1]  K. Aoki,et al.  Differential evolution of the UV luminosity function of Lyman break galaxies from z ∼ 5 to 3* , 2007, astro-ph/0701841.

[2]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[3]  M. Dickinson,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3* , 1996 .

[4]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[5]  S. M. Fall,et al.  The Morphological Diversities among Star-forming Galaxies at High Redshifts in the Great Observatories Origins Deep Survey , 2006, astro-ph/0606696.

[6]  Xiaohui Fan,et al.  THE FINAL SDSS HIGH-REDSHIFT QUASAR SAMPLE OF 52 QUASARS AT z > 5.7 , 2016, 1610.05369.

[7]  M. Salvato,et al.  CONSTRAINTS ON THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z ∼ 5 IN THE COSMOS FIELD , 2012, 1207.1515.

[8]  Ryan P. Mallery,et al.  Lyα EMISSION FROM HIGH-REDSHIFT SOURCES IN COSMOS , 2012, 1208.6031.

[10]  Z. Cai,et al.  A SURVEY OF LUMINOUS HIGH-REDSHIFT QUASARS WITH SDSS AND WISE. I. TARGET SELECTION AND OPTICAL SPECTROSCOPY , 2016, The Astrophysical Journal.

[11]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). II. Optical Imaging and Photometric Catalogs , 2008, 0801.4017.

[12]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[13]  J. Silverman,et al.  The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey , 2017, 1704.05996.

[14]  J. Binney The physics of dissipational galaxy formation. , 1977 .

[15]  H. Hildebrandt,et al.  The UV galaxy luminosity function at z = 3–5 from the CFHT Legacy Survey Deep fields , 2010, 1009.0758.

[16]  N. Gnedin COSMIC REIONIZATION ON COMPUTERS: THE FAINT END OF THE GALAXY LUMINOSITY FUNCTION , 2016, 1603.07729.

[17]  Linhua Jiang,et al.  Discovery of 16 New z ∼ 5.5 Quasars: Filling in the Redshift Gap of Quasar Color Selection , 2017, 1703.03526.

[18]  C. C. Steidel,et al.  Multiwavelength Observations of Dusty Star Formation at Low and High Redshift , 2000, astro-ph/0001126.

[19]  P. Marshall,et al.  CORRECTING THE z ∼ 8 GALAXY LUMINOSITY FUNCTION FOR GRAVITATIONAL LENSING MAGNIFICATION BIAS , 2015, 1502.03795.

[20]  J. E. Gunn,et al.  Stellar spectrophotometric atlas, wavelengths from 3130 to 10800 A , 1983 .

[21]  B. Garilli,et al.  THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE , 2009 .

[22]  Robert Armstrong,et al.  GalSim: The modular galaxy image simulation toolkit , 2014, Astron. Comput..

[23]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): ugrizYJHK Sérsic luminosity functions and the cosmic spectral energy distribution by Hubble type , 2014, 1401.1817.

[24]  B. Garilli,et al.  Lyα Emitters at Redshift 5.7 in the COSMOS Field , 2007, astro-ph/0702458.

[25]  S. Finkelstein,et al.  The Minimum Halo Mass for Star Formation at z = 6 - 8 , 2016, 1609.06348.

[26]  S. Faber,et al.  Velocity dispersions and mass-to-light ratios for elliptical galaxies. , 1976 .

[27]  V. A. Bruce,et al.  AN EXPONENTIAL DECLINE AT THE BRIGHT END OF THE z = 6 GALAXY LUMINOSITY FUNCTION , 2012, 1202.5330.

[28]  Philip J. Tait,et al.  Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7 < z ≤ 6.8 , 2017, 1704.05854.

[29]  F. Mannucci,et al.  Evidence of a fast evolution of the UV luminosity function beyond redshift 6 from a deep HAWK-I survey of the GOODS-S field , 2009, 0909.2853.

[30]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .

[31]  T. Nagao,et al.  Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program strategy and clustering properties of ∼2000 Lyα emitters at z = 6–7 over the 0.3–0.5 Gpc2 survey area , 2017, 1704.07455.

[32]  Satoshi Miyazaki,et al.  GOLDRUSH - II. Clustering of galaxies at z ∼ 4–6 revealed with the half-million dropouts over the 100 deg2 area corresponding to 1 Gpc3 , 2017, 1704.06535.

[33]  Satoshi Miyazaki,et al.  The bright-star masks for the HSC-SSP survey , 2017, 1705.00622.

[34]  Walter A. Siegmund,et al.  The Second Data Release of the Sloan Digital Sky Survey , 2004 .

[35]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[36]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[37]  A. Loeb,et al.  CONSTRAINING THE MINIMUM MASS OF HIGH-REDSHIFT GALAXIES AND THEIR CONTRIBUTION TO THE IONIZATION STATE OF THE INTERGALACTIC MEDIUM , 2010, 1010.2260.

[38]  E. Scannapieco,et al.  Quasar Feedback: The Missing Link in Structure Formation , 2004, astro-ph/0401087.

[39]  T. Heckman,et al.  Internal Absorption and the Luminosity of Disk Galaxies , 1996 .

[40]  R. Bouwens,et al.  Extremely Small Sizes for Faint z ∼ 2–8 Galaxies in the Hubble Frontier Fields: A Key Input for Establishing Their Volume Density and UV Emissivity , 2016, 1608.00966.

[41]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[42]  S. Finkelstein,et al.  Directly Observing the Galaxies Likely Responsible for Reionization , 2016, 1604.06799.

[43]  Craig Loomis,et al.  Hyper Suprime-Cam , 2012, Other Conferences.

[44]  R. Windhorst,et al.  A distortion of very-high-redshift galaxy number counts by gravitational lensing , 2011, Nature.

[45]  J. Dunlop,et al.  A remarkably high fraction of strong Lyα emitters amongst luminous redshift 6.0 < z < 6.5 Lyman-break galaxies in the UKIDSS Ultra-Deep Survey , 2012 .

[46]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[47]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[48]  T. Nagao,et al.  SILVERRUSH. IV. Lyα luminosity functions at z = 5.7 and 6.6 studied with ∼1300 Lyα emitters on the 14–21 deg2 sky , 2017, 1705.01222.

[49]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[50]  M. Oguri,et al.  PRECISE STRONG LENSING MASS MODELING OF FOUR HUBBLE FRONTIER FIELD CLUSTERS AND A SAMPLE OF MAGNIFIED HIGH-REDSHIFT GALAXIES , 2015, 1510.06400.

[51]  A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.

[52]  S. Okamura,et al.  Subaru Deep Survey VI. A Census of Lyman Break Galaxies at z=4 and 5 in the Subaru Deep Fields: Clustering Properties , 2003, astro-ph/0309657.

[53]  R. Bouwens,et al.  UV-CONTINUUM SLOPES OF >4000 z ∼ 4–8 GALAXIES FROM THE HUDF/XDF, HUDF09, ERS, CANDELS-SOUTH, AND CANDELS-NORTH FIELDS , 2013, 1306.2950.

[54]  A. Mazure,et al.  The VIMOS VLT Deep Survey final data release: a spectroscopic sample of 35 016 galaxies and AGN out to z ~ 6.7 selected with 17.5 ≤ iAB ≤ 24.75 , 2013, 1307.0545.

[55]  H. Rix,et al.  THE PAN-STARRS1 DISTANT z > 5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE , 2016, 1608.03279.

[56]  J. Silk On the fragmentation of cosmic gas clouds. I. The formation of galaxies and the first generation of stars. , 1977 .

[57]  J. P. U. Fynbo,et al.  Edinburgh Research Explorer Discovery of bright z 7 galaxies in the UltraVISTA survey , 2012 .

[58]  D. Kelson,et al.  IMACS: The Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade , 2011 .

[59]  Michele Cirasuolo,et al.  THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.

[60]  R. Davé,et al.  THE LBT BOÖTES FIELD SURVEY. I. THE REST-FRAME ULTRAVIOLET AND NEAR-INFRARED LUMINOSITY FUNCTIONS AND CLUSTERING OF BRIGHT LYMAN BREAK GALAXIES AT Z ∼ 3 , 2013, 1307.4835.

[61]  Satoshi Miyazaki,et al.  The on-site quality-assurance system for Hyper Suprime-Cam: OSQAH , 2018 .

[62]  Mamoru Doi,et al.  Lyα Emitters at z = 5.7 in the Subaru Deep Field , 2006, astro-ph/0602614.

[63]  A. Eddington,et al.  On a Formula for Correcting Statistics for the Effects of a known Probable Error of Observation , 1913 .

[64]  Yen-Ting Lin,et al.  GOLDRUSH. III. A systematic search for protoclusters at z ∼ 4 based on the >100 deg2 area , 2017, 1708.09421.

[65]  M. Oguri,et al.  HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5–10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION , 2014, 1408.6903.

[66]  O. Fèvre,et al.  The galaxy luminosity function at z ≃ 6 and evidence for rapid evolution in the bright end from z ≃ 7 to 5 , 2014, 1411.2976.

[67]  J. Trump,et al.  ERRATUM: “PHOTOMETRIC PROPERTIES OF Lyα EMITTERS AT z ≈ 4.86 IN THE COSMOS 2 SQUARE DEGREE FIELD” (2009, ApJ, 696, 546) , 2009, 0901.4627.

[68]  J. Dunlop,et al.  No evidence for a significant AGN contribution to cosmic hydrogen reionization , 2017, 1704.07750.

[69]  R. Ellis,et al.  A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.

[70]  M. Franx,et al.  STRUCTURE AND MORPHOLOGIES OF z ∼ 7–8 GALAXIES FROM ULTRA-DEEP WFC3/IR IMAGING OF THE HUBBLE ULTRA-DEEP FIELD , 2009, 0909.5183.

[71]  M. Rees,et al.  Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters , 1977 .

[72]  P. A. Price,et al.  THE PAN-STARRS 1 PHOTOMETRIC REFERENCE LADDER, RELEASE 12.01 , 2013, 1303.3634.

[73]  L. Pentericci,et al.  Faint AGNs at z > 4 in the CANDELS GOODS-S field: looking for contributors to the reionization of the Universe , 2015, 1502.02562.

[74]  R. Bouwens,et al.  The z ∼ 6 Luminosity Function Fainter than −15 mag from the Hubble Frontier Fields: The Impact of Magnification Uncertainties , 2016, 1610.00283.

[75]  Kentaro Aoki,et al.  FOCAS: faint object camera and spectrograph for the Subaru Telescope , 2000, Astronomical Telescopes and Instrumentation.

[76]  M. Oguri,et al.  THE SIZES OF z ∼ 6–8 LENSED GALAXIES FROM THE HUBBLE FRONTIER FIELDS ABELL 2744 DATA , 2014, 1410.1535.

[77]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[78]  T. Grav,et al.  PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY , 2012, 1201.2208.

[79]  R. Teyssier,et al.  Cosmic Dawn (CoDa): the first radiation-hydrodynamics simulation of reionization and galaxy formation in the Local Universe , 2015, 1511.00011.

[80]  M. Im,et al.  THE SUBARU HIGH-z QUASAR SURVEY: DISCOVERY OF FAINT z ∼ 6 QUASARS , 2014, 1410.7401.

[81]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[82]  Song Huang,et al.  The Hyper Suprime-Cam Software Pipeline , 2017, 1705.06766.

[83]  H. F. Erguson,et al.  THE MORPHOLOGICAL DIVERSITIES AMONG STAR-FORMING GALAXIES AT HIGH REDSHIFTS IN THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY , 2008 .

[84]  The End of the Reionization Epoch Probed by Lyα Emitters at z = 6.5 in the Subaru Deep Field* ** , 2006, astro-ph/0604149.

[85]  D. Stark Galaxies in the First Billion Years After the Big Bang , 2016 .

[86]  J. Kneib,et al.  ARE ULTRA-FAINT GALAXIES AT z = 6–8 RESPONSIBLE FOR COSMIC REIONIZATION? COMBINED CONSTRAINTS FROM THE HUBBLE FRONTIER FIELDS CLUSTERS AND PARALLELS , 2015, 1509.06764.

[87]  M. Sawicki,et al.  Keck Deep Fields. II. The Ultraviolet Galaxy Luminosity Function at z ~ 4, 3, and 2* , 2005, astro-ph/0507519.

[88]  Michele Cirasuolo,et al.  EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.3869.

[89]  J. Dunlop,et al.  Unveiling the nature of bright z ~ 7 galaxies with the Hubble Space Telescope , 2016, 1605.05325.

[90]  Nimish Hathi,et al.  THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.

[91]  Masami Ouchi,et al.  MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. I. SIZE EVOLUTION , 2015, 1503.07481.

[92]  K. Nagamine,et al.  IMPACT OF H2-BASED STAR FORMATION MODEL ON THE z ⩾ 6 LUMINOSITY FUNCTION AND THE IONIZING PHOTON BUDGET FOR REIONIZATION , 2013, 1301.5270.

[93]  Mattia Fumagalli,et al.  THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.

[94]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions , 2011, 1111.0166.

[95]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[96]  R. Bouwens,et al.  The impact of strong gravitational lensing on observed Lyman-break galaxy numbers at 4 ≤ z ≤ 8 in the GOODS and the XDF blank fields , 2015, 1502.03887.

[97]  Mauro Giavalisco,et al.  Lyman-Break Galaxies , 2002 .

[98]  R. Bouwens,et al.  THE EVOLUTION OF MASS–SIZE RELATION FOR LYMAN BREAK GALAXIES FROM z = 1 to z = 7 , 2012, 1207.6634.

[99]  J. Dunlop,et al.  Non-parametric analysis of the rest-frame UV sizes and morphological disturbance amongst L* galaxies at 4 , 2014, 1409.1832.

[100]  Paul W. Angel,et al.  Dark-ages reionization and galaxy formation simulation – IV. UV luminosity functions of high-redshift galaxies , 2015, 1512.00563.

[101]  R. McLure,et al.  THE CANADA–FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6 , 2009, 0912.0281.

[102]  A. Dekel,et al.  METALLICITY-DEPENDENT QUENCHING OF STAR FORMATION AT HIGH REDSHIFT IN SMALL GALAXIES , 2011, 1106.0301.

[103]  S. Okamura,et al.  Deep Spectroscopy of Systematically Surveyed Extended Lyα Sources at z ~ 3-5 , 2007, 0705.1494.

[104]  S. Okamura,et al.  STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.

[105]  J. Binney On the origin of the galaxy luminosity function , 2003, astro-ph/0308172.

[106]  J. Dunlop,et al.  The z = 9-10 galaxy population in the Hubble Frontier Fields and CLASH surveys: the z = 9 luminosity function and further evidence for a smooth decline in ultraviolet luminosity density at z≥ 8 , 2016, 1602.05199.

[107]  L. Waerbeke,et al.  CARS: the CFHTLS-Archive-Research Survey - II. Weighing dark matter halos of Lyman-break galaxies at z = 3–5 , 2009, 0903.3951.

[108]  Philip J. Tait,et al.  SUBARU HIGH-z EXPLORATION OF LOW-LUMINOSITY QUASARS (SHELLQs). I. DISCOVERY OF 15 QUASARS AND BRIGHT GALAXIES AT 5.7 < z < 6.9 , 2016, 1603.02281.

[109]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[110]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[111]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[112]  et al,et al.  Near-Infrared Photometry and Spectroscopy of L and T Dwarfs: The Effects of Temperature, Clouds, and Gravity , 2004, astro-ph/0402451.

[113]  O. Fèvre,et al.  HST Imaging of the Brightest z ∼ 8–9 Galaxies from UltraVISTA: The Extreme Bright End of the UV Luminosity Function , 2017, 1706.04613.

[114]  M. Salvato,et al.  EVOLUTION OF THE QUASAR LUMINOSITY FUNCTION OVER 3 < z < 5 IN THE COSMOS SURVEY FIELD , 2012, 1207.2154.

[115]  Satoshi Miyazaki,et al.  Characterization and Photometric Performance of the Hyper Suprime-Cam Software Pipeline , 2017, 1705.01599.

[116]  Garth D. Illingworth,et al.  z ~ 7-10 Galaxies in the HUDF and GOODS Fields: UV Luminosity Functions , 2008, 0803.0548.

[117]  B. Garilli,et al.  Size evolution of star-forming galaxies with 2 , 2016, 1602.01840.

[118]  T. Nagao,et al.  REVISITING THE COMPLETENESS AND LUMINOSITY FUNCTION IN HIGH-REDSHIFT LOW-LUMINOSITY QUASAR SURVEYS , 2016, 1610.01619.

[119]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[120]  M. Oguri,et al.  PROBABILITY DISTRIBUTION FUNCTIONS OF COSMOLOGICAL LENSING: CONVERGENCE, SHEAR, AND MAGNIFICATION , 2011, 1106.3823.

[121]  J. Dunlop,et al.  THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS z ∼ 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.4819.

[122]  B. O’Shea,et al.  PROBING THE ULTRAVIOLET LUMINOSITY FUNCTION OF THE EARLIEST GALAXIES WITH THE RENAISSANCE SIMULATIONS , 2015, 1503.01110.

[123]  J. Dunlop,et al.  The luminosity function, halo masses and stellar masses of luminous Lyman-break galaxies at redshifts 5 < z < 6 , 2008, 0805.1335.

[124]  Oswald H. W. Siegmund,et al.  THE STAR FORMATION RATE FUNCTION OF THE LOCAL UNIVERSE , 2005 .

[125]  A. Omont,et al.  EDDINGTON-LIMITED ACCRETION AND THE BLACK HOLE MASS FUNCTION AT REDSHIFT 6 , 2010, 1006.1342.

[126]  A. Myers,et al.  THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82 , 2012, 1212.4493.

[127]  S.Paltani,et al.  The VIMOS Ultra Deep Survey first data release: Spectra and spectroscopic redshifts of 698 objects up to zspec ~ 6 in CANDELS , 2016, 1602.01842.

[128]  S. Djorgovski,et al.  THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z ∼ 4: IMPLICATIONS FOR IONIZATION OF THE INTERGALACTIC MEDIUM AND COSMIC DOWNSIZING , 2009, 0912.2799.

[129]  Daniel Masters,et al.  The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1 , 2017, 1704.06665.

[130]  I. Hook,et al.  The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .

[131]  A. Myers,et al.  The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release , 2016, 1608.06483.

[132]  Yukiko Kamata,et al.  Hyper Suprime-Cam: Camera dewar design , 2018 .

[133]  Masayuki Tanaka,et al.  A SYSTEMATIC SURVEY OF PROTOCLUSTERS AT z ∼ 3–6 IN THE CFHTLS DEEP FIELDS , 2016, 1605.01439.

[134]  Masayuki Tanaka,et al.  SILVERRUSH. III. Deep Optical and Near-Infrared Spectroscopy for Lya and UV-Nebular Lines of Bright Lya Emitters at z=6-7 , 2017, 1705.00733.

[135]  Durham,et al.  What Shapes the Luminosity Function of Galaxies? , 2003, astro-ph/0302450.

[136]  Satoshi Miyazaki,et al.  Photometric Redshifts for Hyper Suprime-Cam Subaru Strategic Program Data Release 1 , 2017, 1704.05988.

[137]  S. M. Fall,et al.  LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION , 2009, 0908.3191.

[138]  S. Okamura,et al.  Luminosity Functions of Lyman Break Galaxies at z ~ 4 and z ~ 5 in the Subaru Deep Field , 2006, astro-ph/0608512.

[139]  Number Density of Bright Lyman-Break Galaxies at z〜6 in the Subaru Deep Field , 2005, astro-ph/0504373.

[140]  D. Schiminovich,et al.  The First Release COSMOS Optical and Near-IR Data and Catalog , 2007, 0704.2430.

[141]  P. Madau,et al.  DWARF GALAXY FORMATION WITH H2-REGULATED STAR FORMATION. II. GAS-RICH DARK GALAXIES AT REDSHIFT 2.5 , 2013 .

[142]  M. Norman,et al.  The birth of a galaxy – III. Propelling reionization with the faintest galaxies , 2014, 1403.6123.

[143]  M. Stiavelli,et al.  Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High-z Surveys , 2007, 0712.0398.