The Origin of the Moon Within a Terrestrial Synestia

The giant impact hypothesis remains the leading theory for lunar origin. However, current models struggle to explain the Moon's composition and isotopic similarity with Earth. Here we present a new lunar origin model. High-energy, high-angular momentum giant impacts can create a post-impact structure that exceeds the corotation limit (CoRoL), which defines the hottest thermal state and angular momentum possible for a corotating body. In a typical super-CoRoL body, traditional definitions of mantle, atmosphere and disk are not appropriate, and the body forms a new type of planetary structure, named a synestia. Using simulations of cooling synestias combined with dynamic, thermodynamic and geochemical calculations, we show that satellite formation from a synestia can produce the main features of our Moon. We find that cooling drives mixing of the structure, and condensation generates moonlets that orbit within the synestia, surrounded by tens of bars of bulk silicate Earth (BSE) vapor. The moonlets and growing moon are heated by the vapor until the first major element (Si) begins to vaporize and buffer the temperature. Moonlets equilibrate with BSE vapor at the temperature of silicate vaporization and the pressure of the structure, establishing the lunar isotopic composition and pattern of moderately volatile elements. Eventually, the cooling synestia recedes within the lunar orbit, terminating the main stage of lunar accretion. Our model shifts the paradigm for lunar origin from specifying a certain impact scenario to achieving a Moon-forming synestia. Giant impacts that produce potential Moon-forming synestias were common at the end of terrestrial planet formation.

[1]  G. J. Taylor,et al.  GRAIL, LLR, and LOLA constraints on the interior structure of the Moon , 2016 .

[2]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[3]  S. Tremaine,et al.  The excitation of density waves at the Lindblad and corotation resonances by an external potential. , 1979 .

[4]  R. Paniello,et al.  Zinc isotopic evidence for the origin of the Moon , 2012, Nature.

[5]  Peter Goldreich,et al.  Disk-Satellite Interactions , 1980 .

[6]  Sarah T. Stewart,et al.  COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. I. OUTCOME REGIMES AND SCALING LAWS , 2011, 1106.6084.

[7]  R. Canup,et al.  Simulations of a late lunar-forming impact , 2004 .

[8]  T. Kleine,et al.  Tungsten isotopes and the origin of the Moon , 2017 .

[9]  Katherine A. Kelley,et al.  Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin , 2013 .

[10]  Ashwin R. Vasavada,et al.  Jovian atmospheric dynamics: an update after Galileo and Cassini , 2005 .

[11]  J. Orman,et al.  Water in the Moon's interior: Truth and consequences , 2015 .

[12]  D. Stevenson,et al.  Gravitational instability in two-phase disks and the origin of the moon , 1988 .

[13]  B. Mason Composition of the Earth , 1966, Nature.

[14]  R. Lange,et al.  Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties , 1987 .

[15]  N. Kaib,et al.  Building the terrestrial planets: Constrained accretion in the inner Solar System , 2009, 0905.3750.

[16]  S. Taylor,et al.  Planetary Crusts: Their Composition, Origin and Evolution , 2009 .

[17]  Charles Henry Brian Priestley,et al.  Turbulent Transfer in the Lower Atmosphere , 1959 .

[18]  William W. Willmarth,et al.  Some experimental results on sphere and disk drag , 1971 .

[19]  R. Clayton,et al.  Oxygen isotope studies of achondrites , 1996 .

[20]  G. Holland,et al.  Seawater subduction controls the heavy noble gas composition of the mantle , 2006, Nature.

[21]  H. J. Melosh,et al.  A hydrocode equation of state for SiO2 , 2007 .

[22]  Matthew E. Pritchard,et al.  The Constitution and Structure of the Lunar Interior , 2006 .

[23]  Sarah T. Stewart,et al.  COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. II. THE DIVERSITY OF IMPACT OUTCOMES DURING THE END STAGE OF PLANET FORMATION , 2012 .

[24]  Philippe Lognonné,et al.  A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon , 2003 .

[25]  A. Morbidelli,et al.  Terrestrial planet formation with strong dynamical friction , 2006 .

[26]  T. Kleine,et al.  Lunar tungsten isotopic evidence for the late veneer , 2015, Nature.

[27]  S. Jacobsen,et al.  Potassium isotopic evidence for a high-energy giant impact origin of the Moon , 2016, Nature.

[28]  H. Melosh New approaches to the Moon's isotopic crisis , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  F. Nimmo,et al.  Tidal dissipation in the lunar magma ocean and its effect on the early evolution of the Earth–Moon system , 2016 .

[30]  David J. Stevenson,et al.  Origin of the Moon-The Collision Hypothesis , 1987 .

[31]  S. Mukhopadhyay Early differentiation and volatile accretion recorded in deep-mantle neon and xenon , 2012, Nature.

[32]  R. Berman,et al.  A thermodynamic model for multicomponent melts, with application to the system CaO-Al2O3-SiO2 , 1984 .

[33]  V. Solomatov,et al.  Fluid Dynamics of a Terrestrial Magma Ocean , 2000 .

[34]  N. Dauphas The isotopic nature of the Earth’s accreting material through time , 2017, Nature.

[35]  Y. Abe,et al.  The Evolution of an Impact-generated Partially Vaporized Circumplanetary Disk , 2004 .

[36]  M. Mace,et al.  A New Model for Lunar Origin: Equilibration with Earth Beyond the Hot Spin Stability Limit , 2016 .

[37]  Surface Tension of Melts of the System KF—K2MoO4—SiO2 , 2003 .

[38]  G. Lugmair,et al.  Early solar system timescales according to 53Mn-53Cr systematics , 1998 .

[39]  Reid F. Cooper,et al.  Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior , 2008, Nature.

[40]  R. Canup Lunar-forming collisions with pre-impact rotation , 2007 .

[41]  W. Benz,et al.  A hit-and-run giant impact scenario , 2012, 1207.5224.

[42]  Andrew M. Davis,et al.  The proto-Earth as a significant source of lunar material , 2012 .

[43]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[44]  B. Fegley,et al.  Speciation and dissolution of hydrogen in the proto-lunar disk , 2016, 1603.06526.

[45]  P. Warren “New” lunar meteorites: Implications for composition of the global lunar surface, lunar crust, and the bulk Moon , 2005 .

[46]  Q. Yin,et al.  Diverse supernova sources of pre-solar material inferred from molybdenum isotopes in meteorites , 2002, Nature.

[47]  P. Lognonné,et al.  Very preliminary reference Moon model , 2011 .

[48]  Collisionless encounters and the origin of the lunar inclination , 2015, Nature.

[49]  A. E. Ringwood,et al.  Terrestrial origin of the Moon , 1986, Nature.

[50]  David E. Smith,et al.  Lunar interior properties from the GRAIL mission , 2014 .

[51]  A. E. Ringwood,et al.  Basaltic magmatism and the bulk composition of the moon , 1977 .

[52]  Eiichiro Kokubo,et al.  FORMATION OF TERRESTRIAL PLANETS FROM PROTOPLANETS UNDER A REALISTIC ACCRETION CONDITION , 2010, 1003.4384.

[53]  S. Taylor The Moon re-examined , 2014 .

[54]  D. Stevenson,et al.  Inefficient volatile loss from the Moon-forming disk: Reconciling the giant impact hypothesis and a wet Moon , 2018, 1812.10502.

[55]  M. Ćuk,et al.  Making the Moon from a Fast-Spinning Earth: A Giant Impact Followed by Resonant Despinning , 2012, Science.

[56]  W. Ward Evolution of a protolunar disk in vapor/melt equilibrium , 2017 .

[57]  Sami W. Asmar,et al.  The Crust of the Moon as Seen by GRAIL , 2012, Science.

[58]  D. Stevenson,et al.  Melting and mixing states of the Earth’s mantle after the Moon-forming impact , 2015, 1506.04853.

[59]  H. Wänke,et al.  A komatiite component in Apollo 16 highland breccias: implications for the nickel-cobalt systematics and bulk composition of the moon , 1987 .

[60]  L. Schaefer,et al.  VAPORIZATION OF THE EARTH: APPLICATION TO EXOPLANET ATMOSPHERES , 2011, 1108.4660.

[61]  S. Ida,et al.  Lunar accretion from an impact-generated disk , 1997, Nature.

[62]  R. Carlson,et al.  Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts , 2016, Science.

[63]  Christina Freytag,et al.  Planetary Science A Lunar Perspective , 2016 .

[64]  R. Canup,et al.  Origin of the Moon's orbital inclination from resonant disk interactions , 2000, Nature.

[65]  F. Moynier,et al.  Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[66]  Kevin Righter,et al.  Determining the composition of the Earth , 2002, Nature.

[67]  J. Longhi Petrogenesis of picritic mare magmas: Constraints on the extent of early lunar differentiation , 2006 .

[68]  S. Peale Generalized Cassini's laws , 1969 .

[69]  M. Ćuk,et al.  Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth , 2016, Nature.

[70]  S. Stewart,et al.  The structure of terrestrial bodies: Impact heating, corotation limits, and synestias , 2017, 1705.07858.

[71]  G. J. Taylor Origin of the Earth and Moon , 1998 .

[72]  Michiel Lambrechts,et al.  Rapid growth of gas-giant cores by pebble accretion , 2012, 1205.3030.

[73]  M. W. Chase,et al.  NIST-JANAF Thermochemical Tables, 4th Edition , 1998 .

[74]  N. Dauphas,et al.  Geochemical arguments for an Earth-like Moon-forming impactor , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[75]  J. Stebbins,et al.  Heat capacities and entropies of silicate liquids and glasses , 1984 .

[76]  G. Flierl,et al.  The deep wind structure of the giant planets: Results from an anelastic general circulation model , 2009 .

[77]  W. Bottke,et al.  Growing the terrestrial planets from the gradual accumulation of submeter-sized objects , 2015, Proceedings of the National Academy of Sciences.

[78]  J. Morgan,et al.  The moon: Composition determined by nebular processes , 1978 .

[79]  W. Ward On the evolution of the protolunar disc† , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[80]  L. Taylor,et al.  Oxygen Isotopes and the Moon-Forming Giant Impact , 2001, Science.

[81]  K. Shariff Fluid Mechanics in Disks Around Young Stars , 2009 .

[82]  R. Canup Forming a Moon with an Earth-like Composition via a Giant Impact , 2012, Science.

[83]  David L. Valentine,et al.  Seismic Detection of the Lunar Core , 2011 .

[84]  J. Schilling,et al.  The heavy noble gas composition of the depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in the mantle , 2012 .

[85]  H. Alfvén,et al.  Evolution of the earth-moon system. , 1974 .

[86]  William K. Hartmann,et al.  Satellite-Sized Planetesimals and Lunar Origin , 1975 .

[87]  B. Fegley,et al.  CHEMISTRY OF IMPACT-GENERATED SILICATE MELT-VAPOR DEBRIS DISKS , 2013, 1303.3905.

[88]  B. Fegley,et al.  LUNAR VOLATILE DEPLETION DUE TO INCOMPLETE ACCRETION WITHIN AN IMPACT-GENERATED DISK. , 2015, Nature geoscience.

[89]  R. Kraichnan Turbulent Thermal Convection at Arbitrary Prandtl Number , 1962 .

[90]  H. Melosh A hydrocode equation of state for SiO , 2008 .

[91]  B. Hansen FORMATION OF THE TERRESTRIAL PLANETS FROM A NARROW ANNULUS , 2009, 0908.0743.

[92]  O. Aharonson,et al.  A multiple-impact origin for the Moon , 2017, 1903.02525.

[93]  C. Muller Theory of Planetary Atmospheres: An Introduction to Their Physics and Chemistry , 1987 .

[94]  JOHN S. Lewis,et al.  The Composition and Early Evolution of Earth , 1993 .

[95]  E. Spiegel Convection in Stars I. Basic Boussinesq Convection , 1971 .

[96]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[97]  Equilibration in the aftermath of the lunar-forming giant impact , 2007, 1012.5323.

[98]  J. Wisdom,et al.  Coupled orbital-thermal evolution of the early Earth-Moon system with a fast-spinning Earth , 2017 .

[99]  S. Desch,et al.  Magneto-rotational instability in the protolunar disk , 2015, 1512.06194.

[100]  J. Standish,et al.  Heterogeneous upper mantle Ne, Ar and Xe isotopic compositions and a possible Dupal noble gas signature recorded in basalts from the Southwest Indian Ridge , 2012 .

[101]  J. Wisdom,et al.  Early evolution of the Earth–Moon system with a fast-spinning Earth , 2015 .

[102]  D. Stevenson,et al.  Thermal Aspects of a Lunar Origin by Giant Impact , 2000 .

[103]  Erik Asphaug,et al.  Hit-and-run planetary collisions , 2006, Nature.

[104]  B. Marty,et al.  A determination of the neon isotopic composition of the deep mantle: Earth and Planetary Science Let , 2004 .

[105]  A. Barr On the origin of Earth's Moon , 2016, 1608.08959.

[106]  R. Canup,et al.  Accretion of the Moon from non-canonical discs , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[107]  A. E. Ringwood,et al.  Basaltic magmatism and the bulk composition of the moon , 1977 .

[108]  Erik Asphaug,et al.  Origin of the Moon in a giant impact near the end of the Earth's formation , 2001, Nature.

[109]  W. Slattery Impact origin of the Moon , 1998 .

[110]  S. Mukhopadhyay,et al.  Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases , 2013, 1403.0806.

[111]  D. L. Anderson,et al.  The Origin of the Moon , 1972, Nature.

[112]  R. Walker,et al.  Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon , 2015, Nature.

[113]  D. Stevenson Turbulent thermal convection in the presence of rotation and a magnetic field: A heuristic theory , 1979 .

[114]  R. Canup Accretion of the Earth , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[115]  M. Kurz,et al.  Tungsten-182 heterogeneity in modern ocean island basalts , 2017, Science.

[116]  H. Wänke,et al.  Chemical and Isotopic Evidence for the Early History of the Earth-Moon System , 1982 .

[117]  J. Rowe,et al.  THE FREQUENCY OF GIANT IMPACTS ON EARTH-LIKE WORLDS , 2015, 1511.03663.

[118]  Seth Andrew Jacobson,et al.  Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact , 2016, Science.

[119]  J. Stadel,et al.  Enhanced Mixing in Giant Impact Simulations with a New Lagrangian Method , 2017, The Astrophysical Journal.

[120]  M. Rivers,et al.  Ultrasonic studies of silicate melts , 1987 .

[121]  A. Barker,et al.  THEORY AND SIMULATIONS OF ROTATING CONVECTION , 2014, 1403.7207.

[122]  J. Makino,et al.  Evolution of a Circumterrestrial Disk and Formation of a Single Moon , 1999 .

[123]  Z. Sharp,et al.  The Chlorine Isotope Composition of the Moon and Implications for an Anhydrous Mantle , 2010, Science.

[124]  Tom Gaertner Ellipsoidal Figures Of Equilibrium , 2016 .

[125]  D. Stevenson,et al.  Investigation of the initial state of the Moon-forming disk: Bridging SPH simulations and hydrostatic models , 2014, 1401.3036.

[126]  H. Palme,et al.  Cosmochemical Estimates of Mantle Composition , 2014 .

[127]  R. Canup,et al.  LUNAR ACCRETION FROM A ROCHE-INTERIOR FLUID DISK , 2012, 1210.0932.

[128]  Gilbert W. Collins,et al.  Shock vaporization of silica and the thermodynamics of planetary impact events , 2012 .

[129]  M. Petaev The GRAINS thermodynamic and kinetic code for modeling nebular condensation , 2009 .

[130]  J. Birck,et al.  Widespread 54Cr Heterogeneity in the Inner Solar System , 2007 .

[131]  C. Michaut,et al.  Evolution of the protolunar disk: dynamics, cooling timescale and implantation of volatiles onto the Earth , 2015, 1507.05658.

[132]  J. V. Van Orman,et al.  High Pre-Eruptive Water Contents Preserved in Lunar Melt Inclusions , 2011, Science.

[133]  P. Ricker,et al.  A HOT BIG BANG THEORY: MAGNETIC FIELDS AND THE EARLY EVOLUTION OF THE PROTOLUNAR DISK , 2016, 1607.02132.

[134]  W. Ward ON THE VERTICAL STRUCTURE OF THE PROTOLUNAR DISK , 2012 .