Systems via Convex Optimization

Mixed performance control problems have been the object of much attention lately. These problems allow for capturing different performance specifications without resorting to approximations or the use of weighting functions, thus elimi- nating the need for trial-and-error-type iterations. In this paper we present a methodology for designing mixed controllers for MIMO systems. These controllers allow for minimizing the worst case peak output due to persistent disturbances, while at the same time satisfying an -norm constraint upon a given closed- loop transfer function. Therefore, they are of particular interest for applications dealing with multiple performance specifications given in terms of the worst case peak values, both in the time and frequency domains. The main results of the paper show that 1) contrary to the case, the problem admits a solution in , and 2) rational suboptimal controllers can be obtained by solving a sequence of problems, each one consisting of a finite-dimensional convex optimization and a four-block problem. Moreover, this sequence of controllers converges in the topology to an optimum.

[1]  M. Sznaier,et al.  Persistent disturbance rejection via static-state feedback , 1995, IEEE Trans. Autom. Control..

[2]  Franco Blanchini,et al.  Rational 𝓛1 suboptimal compensators for continuous-time systems , 1994, IEEE Trans. Autom. Control..

[3]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[4]  D. Bernstein,et al.  LQG control with an H/sup infinity / performance bound: a Riccati equation approach , 1989 .

[5]  J. Pearson,et al.  L^{1} -optimal compensators for continuous-time systems , 1987 .

[6]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[7]  Franco Blanchini Feedback control for linear time-invariant systems with state and control bounds in the presence of disturbances , 1990 .

[8]  Athanasios Sideris,et al.  H∞ optimization with time-domain constraints , 1994, IEEE Trans. Autom. Control..

[9]  Munther A. Dahleh,et al.  Controller Design via Infinite-Dimensional Linear Programming , 1993, 1993 American Control Conference.

[10]  J. Pearson,et al.  l^{1} -optimal feedback controllers for MIMO discrete-time systems , 1987 .

[11]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[12]  Mario Sznaier Mixed l 1 / H ∞ controllers for SISO discrete time systems , 1994 .

[13]  Isaac Kaminer,et al.  Mixed H2/H∞ control for discrete-time systems via convex optimization , 1992, American Control Conference.

[14]  M. Dahleh,et al.  Minimization of the maximum peak-to-peak gain: the general multiblock problem , 1993, IEEE Trans. Autom. Control..

[15]  P. Khargonekar,et al.  Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .

[16]  Munther A. Dahleh,et al.  Examples of extreme cases in i 1 and H ∞ optimization , 1994 .

[17]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[18]  M. Sznaier,et al.  A solution to MIMO 4-block l/sup 1/ optimal control problems via convex optimization , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[19]  B. Palka An Introduction to Complex Function Theory , 1995 .

[20]  Sigurd Skogestad,et al.  Robust control of ill-conditioned plants: high-purity distillation , 1988 .

[21]  E. Polak,et al.  On the design of linear multivariable feedback systems via constrained nondifferentiable optimization in H/sup infinity / spaces , 1989 .

[22]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[23]  Mathukumalli Vidyasagar,et al.  Optimal rejection of persistent bounded disturbances , 1986 .

[24]  Roberto Cignoli,et al.  An introduction to functional analysis , 1974 .

[25]  S. Skogestad,et al.  Performance weight selection for H-infinity and μ-control methods , 1991 .

[26]  J. Doyle,et al.  Linear control theory with an H ∞ 0E optimality criterion , 1987 .

[27]  M. Dahleh,et al.  Control of Uncertain Systems: A Linear Programming Approach , 1995 .