Natural consensus filters for second order infinite dimensional systems

Abstract This work proposes consensus filters for a class of second order infinite dimensional systems. The proposed structure of the consensus filters is that of a local filter written in the natural setting of a second order formulation with the additional coupling that enforces consensus by minimizing the disagreement between all local filters. An advantage of the second order formulation imposed on the local filters is the natural interpretation that they retain, namely that the time derivative of the estimated position is equal to the estimated velocity. Stability analysis of the collective dynamics is achieved via the use of a parameter-dependent Lyapunov functional, and which guarantees that asymptotically, all filters agree with each other and that they all converge to the true state of the second order system.

[1]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[2]  Michael A. Demetriou,et al.  Estimation of Spatially Distributed Processes Using Mobile Spatially Distributed Sensor Network , 2009, SIAM J. Control. Optim..

[3]  Panos J. Antsaklis,et al.  Guest Editorial Special Issue on Networked Control Systems , 2004, IEEE Trans. Autom. Control..

[4]  Jacques-Louis Lions,et al.  Functional and variational methods , 1988 .

[5]  D. Ucinski Optimal measurement methods for distributed parameter system identification , 2004 .

[6]  Francesco Bullo,et al.  Special Issue on Control and Optimization in Cooperative Networks , 2009, SIAM J. Control. Optim..

[7]  Panos J. Antsaklis,et al.  Special Issue on Technology of Networked Control Systems , 2007 .

[8]  Harvey Thomas Banks,et al.  Smart material structures: Modeling, estimation, and control , 1996 .

[9]  Karsten Schmidt,et al.  Networked control systems in motor vehicles , 2008 .

[10]  Yangquan Chen,et al.  Consensus of information in distributed control of a diffusion process using centroidal Voronoi tessellations , 2007, 2007 46th IEEE Conference on Decision and Control.

[11]  Michael A. Demetriou,et al.  Adaptive parameter estimation of hyperbolic distributed parameter systems : non-symmetric damping and slowly time varying systems , 1998 .

[12]  Maciej Patan,et al.  D-optimal trajectory design of heterogeneous mobile sensors for parameter estimation of distributed systems , 2008, 2008 American Control Conference.

[13]  Mark J. Balas,et al.  Do all linear flexible structures have convergent second-order observers? , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[14]  Olfati-Saber [IEEE 2007 46th IEEE Conference on Decision and Control - New Orleans, LA, USA (2007.12.12-2007.12.14)] 2007 46th IEEE Conference on Decision and Control - Distributed Kalman filtering for sensor networks , 2007 .

[15]  Michael A. Demetriou,et al.  Natural second-order observers for second-order distributed parameter systems , 2004, Syst. Control. Lett..

[16]  R. Olfati-Saber,et al.  Distributed tracking in sensor networks with limited sensing range , 2008, 2008 American Control Conference.

[17]  Derong Liu,et al.  Networked Control Systems: Theory and Applications , 2008 .

[18]  A. Szmytkiewicz J. Urbański K. Olencki,et al.  Measurements, Models, Systems and Design , 2007 .

[19]  Reza Olfati-Saber,et al.  Distributed Kalman filtering for sensor networks , 2007, 2007 46th IEEE Conference on Decision and Control.

[20]  Panos J. Antsaklis,et al.  Control and Communication Challenges in Networked Real-Time Systems , 2007, Proceedings of the IEEE.

[21]  Maciej Patan,et al.  D-optimal design of a monitoring network for parameter estimation of distributed systems , 2007, J. Glob. Optim..

[22]  Christos G. Cassandras,et al.  Sensor Networks and Cooperative Control , 2005, CDC 2005.

[23]  Tu Duc Nguyen,et al.  Second-order observers for second-order distributed parameter systems in R2 , 2008, Syst. Control. Lett..