An unsupervised artifact correction approach for the analysis of DNA microarray images

Image processing for analysis of microarray images is an important and challenging problem because imperfections and fabrication artifacts often impair our ability to measure accurately the quantities of interest in these images. In this paper we propose a microarray image analysis framework that provides a new method that automatically addresses each spot area in the image. Then, a new unsupervised clustering method is used which is based on a Gaussian mixture model (GMM) and the minimum description length (MDL) criterion, that allows the automatic spot area segmentation and the image artifacts isolation and correction to obtain more accurate spot quantitative values. Experimental results demonstrates the advantages of the proposed scheme in efficiently analysing microarrays.