Flame-Made Ir–IrO2/TiO2 Particles as Anode Catalyst Support for Improved Durability in Polymer Electrolyte Fuel Cells

[1]  N. Tuğluoğlu,et al.  Investigation of dielectric properties of amorphous, anatase, and rutile TiO_2 structures , 2023, Journal of Materials Science: Materials in Electronics.

[2]  E. Tanabe,et al.  High specific surface area niobium-doped tin oxide nanoparticles produced in spray flames as catalyst supports in polymer electrolyte fuel cells , 2022, Journal of Nanoparticle Research.

[3]  E. Tanabe,et al.  Multiple ZnO Core Nanoparticles Embedded in TiO2 Nanoparticles as Agents for Acid Resistance and UV Protection , 2022, ACS Applied Nano Materials.

[4]  Muhammad M. Rahman,et al.  Oxygen Reduction Reaction with Manganese Oxide Nanospheres in Microbial Fuel Cells , 2022, ACS omega.

[5]  J. Kikkawa,et al.  Sinter-Necked, Mixed Nanoparticles of Metallic Tungsten and Tungsten Oxide Produced in Fuel-Rich Methane/Air Tubular Flames , 2021, JOURNAL OF CHEMICAL ENGINEERING OF JAPAN.

[6]  Yanyan Sun,et al.  Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells , 2021, Nature Communications.

[7]  K. Kudo,et al.  The role of oxygen-permeable ionomer for polymer electrolyte fuel cells , 2021, Nature Communications.

[8]  Ahmet Kusoglu,et al.  New roads and challenges for fuel cells in heavy-duty transportation , 2021, Nature Energy.

[9]  U. Fritsching,et al.  Synthesis of Metal Oxide Nanoparticles in Flame Sprays: Review on Process Technology, Modeling, and Diagnostics , 2021 .

[10]  S. Pokhrel,et al.  Flame-made Particles for Sensors, Catalysis, and Energy Storage Applications , 2020, Energy & fuels : an American Chemical Society journal.

[11]  Xiangyang Zhou,et al.  High-Repetitive Reversal Tolerant Performance of Proton-Exchange Membrane Fuel Cell by Designing a Suitable Anode , 2020, ACS omega.

[12]  Ping Li,et al.  Photoassisted Hydrothermal Synthesis of IrOx–TiO2 for Enhanced Water Oxidation , 2019, ACS Sustainable Chemistry & Engineering.

[13]  R. Kobayashi,et al.  Electronic states and transport phenomena of Pt nanoparticle catalysts supported on Nb-doped SnO2 for polymer electrolyte fuel cells. , 2019, ACS applied materials & interfaces.

[14]  N. Nakashima,et al.  Impact of Ir-Valence Control and Surface Nanostructure on Oxygen Evolution Reaction over a Highly Efficient Ir–TiO2 Nanorod Catalyst , 2019, ACS Catalysis.

[15]  E. Tanabe,et al.  Tubular Flame Combustion for Nanoparticle Production , 2019, Industrial & Engineering Chemistry Research.

[16]  K. Okuyama,et al.  Enhanced Electrocatalytic Activity of Pt/3D Hierarchical Bimodal Macroporous Carbon Nanospheres. , 2017, ACS applied materials & interfaces.

[17]  K. Mayrhofer,et al.  Stability limits of tin-based electrocatalyst supports , 2017, Scientific Reports.

[18]  M. Povia,et al.  IrO2-TiO2: A High-Surface-Area, Active, and Stable Electrocatalyst for the Oxygen Evolution Reaction , 2017 .

[19]  K. Okuyama,et al.  Tailored Synthesis of Macroporous Pt/WO3 Photocatalyst with Nanoaggregates via Flame Assisted Spray Pyrolysis , 2016 .

[20]  K. Okuyama,et al.  Morphology‐dependent electrocatalytic activity of nanostructured Pt/C particles from hybrid aerosol–colloid process , 2016 .

[21]  Ermete Antolini,et al.  Iridium As Catalyst and Cocatalyst for Oxygen Evolution/Reduction in Acidic Polymer Electrolyte Membrane Electrolyzers and Fuel Cells , 2014 .

[22]  K. Okuyama,et al.  Synthesis of composite WO3/TiO2 nanoparticles by flame-assisted spray pyrolysis and their photocatalytic activity , 2014 .

[23]  Juan Herranz,et al.  Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. , 2011, Nature communications.

[24]  Kohei Ito,et al.  Alternative Electrocatalyst Support Materials for Polymer Electrolyte Fuel Cells , 2010 .

[25]  J. A. Crayston,et al.  Sol–gel processing of IrO2–TiO2 mixed metal oxides based on an iridium acetate precursor , 2008 .

[26]  H. Myers,et al.  Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer , 1957 .

[27]  E. Tanabe,et al.  Recent Advances in the Fabrication and Functionalization of Nanostructured Carbon Spheres for Energy Storage Applications , 2022, KONA Powder and Particle Journal.

[28]  S. Pratsinis,et al.  Atomically dispersed Pd on nanostructured TiO2 for NO removal by solar light , 2017 .

[29]  K. Okuyama,et al.  Nanostructuring strategies in functional fine-particle synthesis towards resource and energy saving applications , 2014 .

[30]  T. Rao,et al.  Pilot Plants for Industrial Nanoparticle Production by Flame Spray Pyrolysis , 2011 .