Tree Spanners for Bipartite Graphs and Probe Interval Graphs
暂无分享,去创建一个
Ryuhei Uehara | Feodor F. Dragan | Andreas Brandstädt | Van Bang Le | Hoàng-Oanh Le | A. Brandstädt | V. B. Le | Ryuhei Uehara | F. Dragan | Hoàng-Oanh Le
[1] Fred R. McMorris,et al. On Probe Interval Graphs , 1998, Discret. Appl. Math..
[2] Brant C. White,et al. United States patent , 1985 .
[3] Peisen Zhang. Probe Interval Graph and Its Applications to Physical Mapping of DNA , 2000 .
[4] Martin Charles Golumbic,et al. Perfect Elimination and Chordal Bipartite Graphs , 1978, J. Graph Theory.
[5] R. Möhring. Algorithmic graph theory and perfect graphs , 1986 .
[6] Feodor F. Dragan,et al. Distance Approximating Trees for Chordal and Dually Chordal Graphs , 1999, J. Algorithms.
[7] Mirka Miller,et al. A characterization of strongly chordal graphs , 1998, Discret. Math..
[8] Feodor F. Dragan,et al. Dually Chordal Graphs , 1993, SIAM J. Discret. Math..
[9] J. Soares. Graph Spanners: a Survey , 1992 .
[10] D. Koenig. Theorie Der Endlichen Und Unendlichen Graphen , 1965 .
[11] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[12] F. McMorris,et al. Topics in Intersection Graph Theory , 1987 .
[13] C. Pandu Rangan,et al. Restrictions of Minimum Spanner Problems , 1997, Inf. Comput..
[14] Feodor F. Dragan,et al. Tree spanners on chordal graphs: complexity and algorithms , 2004, Theor. Comput. Sci..
[15] Van Bang Le,et al. Optimal tree 3-spanners in directed path graphs , 1999, Networks.
[16] Ryuhei Uehara,et al. Tree Spanners for Bipartite Graphs and Probe Interval Graphs , 2003, WG.
[17] Feodor F. Dragan,et al. Incidence Graphs of Biacyclic Hypergraphs , 1996, Discret. Appl. Math..
[18] Leizhen Cai,et al. Tree Spanners , 1995, SIAM J. Discret. Math..
[19] C. Pandu Rangan,et al. Tree 3-Spanners on Interval, Permutation and Regular Bipartite Graphs , 1996, Inf. Process. Lett..
[20] Jeremy P. Spinrad,et al. A polynomial time recognition algorithm for probe interval graphs , 2001, SODA '01.
[21] Jose Augusto Ramos Soares,et al. Graph Spanners: a Survey , 1992 .
[22] Haiko Müller,et al. Recognizing Interval Digraphs and Interval Bigraphs in Polynomial Time , 1997, Discret. Appl. Math..
[23] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[24] A. Dress,et al. Reconstructing the shape of a tree from observed dissimilarity data , 1986 .
[25] Feodor F. Dragan,et al. Tree Spanners on Chordal Graphs: Complexity, Algorithms, Open Problems , 2002, ISAAC.
[26] Elsev Iek. The algorithmic use of hypertree structure and maximum neighbourhood orderings , 2003 .
[27] Jeremy P. Spinrad,et al. Construction of probe interval models , 2002, SODA '02.
[28] L. Vietoris. Theorie der endlichen und unendlichen Graphen , 1937 .
[29] Erich Prisner. Distance Approximating Spanning Trees , 1997, STACS.