The Eocene-Oligocene transition at ODP Site 1263, Atlantic Ocean: decreases in nannoplankton size and abundance and correlation with benthic foraminiferal assemblages

The Eocene-Oligocene transition at ODP Site 1263, Atlantic Ocean: decreases in nannoplankton size and abundance and correlation with benthic foraminiferal assemblages

[1]  A. Poulton,et al.  Biogeochemical implications of comparative growth rates of Emiliania huxleyi and Coccolithus species , 2014 .

[2]  M. Harzhauser,et al.  High-resolution calcareous nannoplankton palaeoecology as a proxy for small-scale environmental changes in the Early Miocene , 2014, Marine micropaleontology.

[3]  T. C. Moore,et al.  Equatorial Pacific productivity changes near the Eocene‐Oligocene boundary , 2014 .

[4]  H. Dijkstra,et al.  The role of ocean gateways on cooling climate on long time scales , 2014 .

[5]  M. Huber,et al.  Antarctic glaciation caused ocean circulation changes at the Eocene–Oligocene transition , 2014, Nature.

[6]  H. Dijkstra,et al.  Emplacement of Antarctic ice sheet mass affects circumpolar ocean flow , 2014 .

[7]  H. Pälike,et al.  Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes , 2014 .

[8]  A. Roberts,et al.  Middle Eocene to Late Oligocene Antarctic Glaciation/Deglaciation and Southern Ocean productivity , 2014 .

[9]  R. DeConto,et al.  A 40-million-year history of atmospheric CO2 , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  B. Hayward,et al.  Can the morphology of deep-sea benthic foraminifera reveal what caused their extinction during the mid-Pleistocene Climate Transition? , 2013 .

[11]  G. Lange,et al.  Paleoenvironmental conditions at Core KC01B (Ionian Sea) through MIS 13–9: Evidence from calcareous nannofossil assemblages , 2013 .

[12]  N. Pelosi,et al.  Calcareous plankton and geochemistry from the ODP site 1209B in the NW Pacific Ocean (Shatsky Rise): New data to interpret calcite dissolution and paleoproductivity changes of the last 450 ka , 2013 .

[13]  L. H. Liow,et al.  Long‐term evolutionary and ecological responses of calcifying phytoplankton to changes in atmospheric CO2 , 2012 .

[14]  F. Hilgen,et al.  On the Geologic Time Scale , 2012, Newsletters on Stratigraphy.

[15]  J. Henderiks,et al.  Alkenone producers during late Oligocene-early Miocene revisited , 2012 .

[16]  A. Winter,et al.  Environmental controls on Emiliania huxleyi morphotypes in the Benguela coastal upwelling system (SE Atlantic) , 2012 .

[17]  J. Zachos,et al.  Foraminiferal Mg/Ca evidence for Southern Ocean cooling across the Eocene–Oligocene transition , 2012 .

[18]  A. Smith,et al.  Comparative quality and fidelity of deep-sea and land-based nannofossil records , 2012 .

[19]  R. DeConto,et al.  The Role of Carbon Dioxide During the Onset of Antarctic Glaciation , 2011, Science.

[20]  P. Wilson,et al.  Early Oligocene glaciation and productivity in the eastern equatorial Pacific: Insights into global carbon cycling , 2011 .

[21]  V. Peck,et al.  Shifting ocean carbonate chemistry during the Eocene-Oligocene climate transition: implications for deep ocean Mg/Ca paleothermometry , 2010 .

[22]  K. Averyt,et al.  Export productivity and carbonate accumulation in the Pacific Basin at the transition from a greenhouse to icehouse climate (late Eocene to early Oligocene) , 2010 .

[23]  P. Pearson,et al.  Atmospheric carbon dioxide through the Eocene–Oligocene climate transition , 2009, Nature.

[24]  M. Huber,et al.  Increased seasonality through the Eocene to Oligocene transition in northern high latitudes , 2009, Nature.

[25]  A. Montanari,et al.  Integrated stratigraphic and astrochronologic calibration of the Eocene-Oligocene transition in the Monte Cagnero section (northeastern Apennines, Italy): A potential parastratotype for the Massignano global stratotype section and point (GSSP) , 2009 .

[26]  A. Montanari,et al.  Evidence for a change in Milankovitch forcing caused by extraterrestrial events at Massignano, Italy, Eocene-Oligocene boundary GSSP , 2009 .

[27]  I. Raffi,et al.  LATE EOCENE TO OLIGOCENE PRESERVATION HISTORY AND BIOCHRONOLOGY OF CALCAREOUS NANNOFOSSILS FROM PALEO-EQUATORIAL PACIFIC OCEAN SEDIMENTS , 2009 .

[28]  Henk Brinkhuis,et al.  Climate Transition Global Cooling During the Eocene-Oligocene , 2009 .

[29]  Michael J Benton,et al.  The Red Queen and the Court Jester: Species Diversity and the Role of Biotic and Abiotic Factors Through Time , 2009, Science.

[30]  Bridget S. Wade,et al.  Major shifts in calcareous phytoplankton assemblages through the Eocene‐Oligocene transition of Tanzania and their implications for low‐latitude primary production , 2008 .

[31]  S. Bohaty,et al.  Middle Eocene-late Oligocene climate variability: calcareous nannofossil response at Kerguelen Plateau, Site 748 , 2008 .

[32]  M. Pagani,et al.  Coccolithophore cell size and the Paleogene decline in atmospheric CO2 , 2008 .

[33]  K. Miller,et al.  Stepwise transition from the Eocene greenhouse to the Oligocene icehouse , 2008 .

[34]  J. Henderiks Coccolithophore size rules — Reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths , 2008 .

[35]  Caroline H. Lear,et al.  Cooling and ice growth across the Eocene-Oligocene transition , 2008 .

[36]  Bridget S. Wade,et al.  Extinction and environmental change across the Eocene-Oligocene boundary in Tanzania , 2008 .

[37]  Pinxian Wang,et al.  Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A , 2007 .

[38]  M. Pagani,et al.  Refining ancient carbon dioxide estimates: Significance of coccolithophore cell size for alkenone-based pCO2 records , 2007 .

[39]  I. Probert,et al.  Effects of acidification and primary production on coccolith weight: Implications for carbonate transfer from the surface to the deep ocean , 2007 .

[40]  P. Pearson,et al.  Stable warm tropical climate through the Eocene Epoch , 2007 .

[41]  Heiko Pälike,et al.  The Heartbeat of the Oligocene Climate System , 2006, Science.

[42]  Jan Backman,et al.  A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years , 2006 .

[43]  R. Henrich,et al.  Coccolith distribution patterns in South Atlantic and Southern Ocean surface sediments in relation to environmental gradients , 2006 .

[44]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[45]  D. J. Thomas,et al.  Early Oligocene Onset of Deep-Water Production in the North Atlantic , 2005 .

[46]  P. Pearson,et al.  A revised tropical to subtropical Paleogene planktonic foraminiferal zonation , 2005 .

[47]  J. Zachos,et al.  Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene , 2005 .

[48]  S. Villiers Foraminiferal shell-weight evidence for sedimentary calcite dissolution above the lysocline , 2005 .

[49]  J. Raven,et al.  CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. , 2005, Annual review of plant biology.

[50]  L. Anderson,et al.  Middle Eocene to early Oligocene paleoceanography from Agulhas Ridge, Southern Ocean (Ocean Drilling Program Leg 177, Site 1090) , 2005 .

[51]  N. Shackleton,et al.  Nannofossil evolutionary events in the mid-Pliocene: an assessment of the degree of synchrony in the extinctions of Reticulofenestra pseudoumbilicus and Sphenolithus abies , 2005 .

[52]  S. Schumacher,et al.  Regional differences in pelagic productivity in the late Eocene to early Oligocene—a comparison of southern high latitudes and lower latitudes , 2004 .

[53]  G. Villa,et al.  Eocene–Oligocene calcareous nannofossils from Maud Rise and Kerguelen Plateau (Antarctica): paleoecological and paleoceanographic implications , 2004 .

[54]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.

[55]  Ellen Thomas,et al.  Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current , 2004 .

[56]  N. Shackleton,et al.  Identification of dissolution patterns in nannofossil assemblages: A high‐resolution comparison of synchronous records from Ceara Rise, ODP Leg 154 , 2004 .

[57]  H. Andruleit,et al.  Living coccolithophores in the northern Arabian Sea: ecological tolerances and environmental control , 2003 .

[58]  David Pollard,et al.  Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 , 2003, Nature.

[59]  U. Riebesell,et al.  Carbon acquisition of bloom‐forming marine phytoplankton , 2003 .

[60]  J. Flores,et al.  Middle Eocene to early Oligocene calcareous nannofossil stratigraphy at Leg 177 Site 1090 , 2002 .

[61]  J. Flores,et al.  Miocene to Pliocene calcareous nannofossil biostratigraphy at ODP Leg 177 Sites 1088 and 1090 , 2002 .

[62]  F. Wenzhöfer,et al.  Modeling of calcite dissolution by oxic respiration in supralysoclinal deep-sea sediments , 2001 .

[63]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[64]  A. Buccianti,et al.  Biotic signals from nannoflora across the iridium anomaly in the upper Eocene of the Massignano section: evidence from statistical analysis , 2000 .

[65]  M. Cachão,et al.  Coccolithus pelagicus, a productivity proxy related to moderate fronts off Western Iberia , 2000 .

[66]  Jörg Bollmann,et al.  Determination of absolute coccolith abundances in deep-sea sediments by spiking with microbeads and spraying (SMS-method) , 1999 .

[67]  William M. Balch,et al.  Biologically mediated dissolution of calcium carbonate above the chemical lysocline , 1999 .

[68]  M. Geisen,et al.  Calibration of the random settling technique for calculation of absolute abundances of calcareous nannoplankton , 1999 .

[69]  Alan C. Mix,et al.  Foraminiferal faunal estimates of paleotemperature: Circumventing the No‐analog problem yields cool Ice Age tropics , 1999 .

[70]  J. Meng,et al.  Faunal turnovers of Palaeogene mammals from the Mongolian Plateau , 1998, Nature.

[71]  Björn A. Malmgren,et al.  Logratio transformation of compositional data: a resolution of the constant sum constraint , 1998 .

[72]  Kamiński,et al.  Contributions to the Micropaleontology and Paleoceanography of the Northern North Atlantic , 1998 .

[73]  L. Hayek,et al.  Surveying Natural Populations: Quantitative Tools for Assessing Biodiversity , 1996 .

[74]  H. Andruleit A filtration technique for quantitative studies of coccoliths , 1996 .

[75]  D. Eric,et al.  Oligocene-Miocene calcareous nannofossil biostratigraphy and paleoecology from the Iberia abyssal plain , 1996 .

[76]  Karen A. Salamy,et al.  High‐resolution (104 years) deep‐sea foraminiferal stable isotope records of the Eocene‐Oligocene climate transition , 1996 .

[77]  A. Gooday,et al.  Cenozoic deep-sea benthic foraminifers: Tracers for changes in oceanic productivity? , 1996 .

[78]  F. Jorissen,et al.  A conceptual model explaining benthic foraminiferal microhabitats , 1995 .

[79]  L. Diester-Haass,et al.  Middle Eocene to early Oligocene paleoceanography of the Antarctic Ocean (Maud Rise, ODP Leg 113, Site 689): change from a low to a high productivity ocean , 1995 .

[80]  I. P. Silva,et al.  Decision on the Eocene-Oligocene boundary stratotype , 1993 .

[81]  Ellen Thomas 12. Middle Eocene-Late Oligocene Bathyal Benthic Foraminifera (Weddell Sea): Faunal Changes and Implications for Ocean Circulation , 1992 .

[82]  James D. Wright,et al.  Unlocking the Ice House: Oligocene‐Miocene oxygen isotopes, eustasy, and margin erosion , 1991 .

[83]  S. W. Wise,et al.  Biogeographic gradients of middle Eocene-Oligocene calcareous nannoplankton in the South Atlantic Ocean , 1990 .

[84]  D. Dockery Punctuated succession of Paleogene mollusks in the northern Gulf Coastal Plain , 1986 .

[85]  G. Keller Stepwise mass extinctions and impact events: Late Eocene to early Oligocene , 1986 .

[86]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[87]  L. Peterson,et al.  Carbonate dissolution in Recent sediments of the eastern equatorial Indian Ocean: Preservation patterns and carbonate loss above the lysocline , 1985 .

[88]  G. P. Lohmann,et al.  Evidence for primary control of the distribution of certain Atlantic Ocean benthonic foraminifera by degree of carbonate saturation , 1982 .

[89]  J. Kennett Cenozoic evolution of Antarctic glaciation the Circum-Antarctic Ocean and their impact on global paleoceanography , 1977 .

[90]  W. Berger Deep-sea carbonates: evidence for a coccolith lysocline , 1973 .

[91]  R. Macarthur,et al.  On the Relative Abundance of Species , 1960, The American Naturalist.

[92]  E. Thomas,et al.  Benthic foraminiferal response to the Middle Eocene Climatic Optimum (MECO) in the South-Eastern Atlantic (ODP Site 1263) , 2015 .

[93]  Ellen Thomas,et al.  Deep-sea benthic foraminiferal turnover during the early–middle Eocene transition at Walvis Ridge (SE Atlantic) , 2015 .

[94]  B. Storey Antarctica: A keystone in a changing world , 2013 .

[95]  F. Jorissen,et al.  Benthic foraminiferal biogeography: controls on global distribution patterns in deep-water settings. , 2012, Annual review of marine science.

[96]  B. Hayward The last global extinction (mid-Pleistocene) of deep-sea benthic foraminifera (Chrysalogonidae, Ellipsoidinidae, Glandulonodosariidae, Plectofrondiculariidae, Pleurostomellidae, Stilostomellidae), their late Cretaceous-Cenozoic history and taxonomy , 2012 .

[97]  Laura Pea Eocene-Oligocene paleoceanography of the subantarctic South Atlantic: Calcareous Nannofossil reconstructions of temperature, nutrient, and dissolution history , 2011 .

[98]  D. Lazarus The deep-sea microfossil record of macroevolutionary change in plankton and its study , 2011 .

[99]  Ellen Thomas,et al.  Evolución paleoambiental del tránsito Eoceno-Oligoceno en el Atlántico sur (Sondeo 1263) basada en foraminíferos bentónicos , 2010 .

[100]  F. Sierro,et al.  Coccolith distribution patterns in surface sediments of Equatorial and Southeastern Pacific Ocean , 2010 .

[101]  F. Gregory,et al.  Deep-time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies , 2007 .

[102]  Ellen Thomas Cenozoic mass extinctions in the deep sea: What perturbs the largest habitat on Earth? , 2007 .

[103]  F. Rohlf Paleontological Data Analysis , 2007 .

[104]  F. Jorissen,et al.  Chapter Seven Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics , 2007 .

[105]  P. Pearson,et al.  The Eocene-Oligocene transition , 2007 .

[106]  P. Bown,et al.  New Paleogene calcareous nannofossil taxa from coastal Tanzania: Tanzania Drilling Project Sites 11 to 14. , 2006, Journal of Nannoplankton Research.

[107]  Caroline H. Lear,et al.  Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean , 2005, Nature.

[108]  Antonella Buccianti,et al.  Insights into Late Quaternary calcareous nannoplankton assemblages under the theory of statistical analysis for compositional data , 2004 .

[109]  P. F. Barkera,et al.  Origin , signature and palaeoclimatic influence of the Antarctic Circumpolar Current , 2004 .

[110]  A. Gooday Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics. , 2003, Advances in marine biology.

[111]  B. Rea,et al.  Leg 199 summary , 2002 .

[112]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[113]  Ø. Hammer,et al.  PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .

[114]  K. Salamy,et al.  Latest Eocene–Early Oligocene climate change and Southern Ocean fertility: inferences from sediment accumulation and stable isotope data , 1999 .

[115]  M. Hugueney Eocene-oligocene climatic and biotic evolution , 1995 .

[116]  W. Berggren,et al.  GEOCHRONOLOGY, TIME SCALES AND GLOBAL STRATIGRAPHIC CORRELATION , 1995 .

[117]  Marie-Pierre Aubry,et al.  A revised Cenozoic geochronology and chronostratigraphy , 1995 .

[118]  A. Winter,et al.  Biogeography of living coccolithophores in ocean waters , 1994 .

[119]  M. Aubry Late Paleogene calcareous nannoplankton evolution: a tale of climatic deterioration , 1992 .

[120]  Ellen Thomas Late Cretaceous through Neogene deep-sea benthic foraminifera(Maud Rise, Weddell Sea, Antarctica) , 1990 .

[121]  M. Sarnthein,et al.  Reconstruction of Low and Middle Latitude Export Productivity, 30,000 Years BP to Present: Implications for Global Carbon Reservoirs , 1990 .

[122]  C. G. Adams,et al.  Larger Foraminifera and Events at the Eocene/Oligocene Boundary in the Indo-West Pacific Region , 1986 .

[123]  H. Okada,et al.  Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975) , 1980 .

[124]  G. P. Lohmann,et al.  Early Cenozoic calcareous nannoplankton biogeography of the Atlantic Ocean , 1976 .

[125]  R. H. Benson The origin of the psychrosphere as recorded in changes of deep-sea ostracode assemblages , 1975 .

[126]  E. Martini Standard Tertiary and Quaternary calcareous nannoplankton zonation , 1971 .

[127]  K. Pearson Mathematical contributions to the theory of evolution.—On a form of spurious correlation which may arise when indices are used in the measurement of organs , 1897, Proceedings of the Royal Society of London.