The Eocene-Oligocene transition at ODP Site 1263, Atlantic Ocean: decreases in nannoplankton size and abundance and correlation with benthic foraminiferal assemblages
暂无分享,去创建一个
[1] A. Poulton,et al. Biogeochemical implications of comparative growth rates of Emiliania huxleyi and Coccolithus species , 2014 .
[2] M. Harzhauser,et al. High-resolution calcareous nannoplankton palaeoecology as a proxy for small-scale environmental changes in the Early Miocene , 2014, Marine micropaleontology.
[3] T. C. Moore,et al. Equatorial Pacific productivity changes near the Eocene‐Oligocene boundary , 2014 .
[4] H. Dijkstra,et al. The role of ocean gateways on cooling climate on long time scales , 2014 .
[5] M. Huber,et al. Antarctic glaciation caused ocean circulation changes at the Eocene–Oligocene transition , 2014, Nature.
[6] H. Dijkstra,et al. Emplacement of Antarctic ice sheet mass affects circumpolar ocean flow , 2014 .
[7] H. Pälike,et al. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes , 2014 .
[8] A. Roberts,et al. Middle Eocene to Late Oligocene Antarctic Glaciation/Deglaciation and Southern Ocean productivity , 2014 .
[9] R. DeConto,et al. A 40-million-year history of atmospheric CO2 , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[10] B. Hayward,et al. Can the morphology of deep-sea benthic foraminifera reveal what caused their extinction during the mid-Pleistocene Climate Transition? , 2013 .
[11] G. Lange,et al. Paleoenvironmental conditions at Core KC01B (Ionian Sea) through MIS 13–9: Evidence from calcareous nannofossil assemblages , 2013 .
[12] N. Pelosi,et al. Calcareous plankton and geochemistry from the ODP site 1209B in the NW Pacific Ocean (Shatsky Rise): New data to interpret calcite dissolution and paleoproductivity changes of the last 450 ka , 2013 .
[13] L. H. Liow,et al. Long‐term evolutionary and ecological responses of calcifying phytoplankton to changes in atmospheric CO2 , 2012 .
[14] F. Hilgen,et al. On the Geologic Time Scale , 2012, Newsletters on Stratigraphy.
[15] J. Henderiks,et al. Alkenone producers during late Oligocene-early Miocene revisited , 2012 .
[16] A. Winter,et al. Environmental controls on Emiliania huxleyi morphotypes in the Benguela coastal upwelling system (SE Atlantic) , 2012 .
[17] J. Zachos,et al. Foraminiferal Mg/Ca evidence for Southern Ocean cooling across the Eocene–Oligocene transition , 2012 .
[18] A. Smith,et al. Comparative quality and fidelity of deep-sea and land-based nannofossil records , 2012 .
[19] R. DeConto,et al. The Role of Carbon Dioxide During the Onset of Antarctic Glaciation , 2011, Science.
[20] P. Wilson,et al. Early Oligocene glaciation and productivity in the eastern equatorial Pacific: Insights into global carbon cycling , 2011 .
[21] V. Peck,et al. Shifting ocean carbonate chemistry during the Eocene-Oligocene climate transition: implications for deep ocean Mg/Ca paleothermometry , 2010 .
[22] K. Averyt,et al. Export productivity and carbonate accumulation in the Pacific Basin at the transition from a greenhouse to icehouse climate (late Eocene to early Oligocene) , 2010 .
[23] P. Pearson,et al. Atmospheric carbon dioxide through the Eocene–Oligocene climate transition , 2009, Nature.
[24] M. Huber,et al. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes , 2009, Nature.
[25] A. Montanari,et al. Integrated stratigraphic and astrochronologic calibration of the Eocene-Oligocene transition in the Monte Cagnero section (northeastern Apennines, Italy): A potential parastratotype for the Massignano global stratotype section and point (GSSP) , 2009 .
[26] A. Montanari,et al. Evidence for a change in Milankovitch forcing caused by extraterrestrial events at Massignano, Italy, Eocene-Oligocene boundary GSSP , 2009 .
[27] I. Raffi,et al. LATE EOCENE TO OLIGOCENE PRESERVATION HISTORY AND BIOCHRONOLOGY OF CALCAREOUS NANNOFOSSILS FROM PALEO-EQUATORIAL PACIFIC OCEAN SEDIMENTS , 2009 .
[28] Henk Brinkhuis,et al. Climate Transition Global Cooling During the Eocene-Oligocene , 2009 .
[29] Michael J Benton,et al. The Red Queen and the Court Jester: Species Diversity and the Role of Biotic and Abiotic Factors Through Time , 2009, Science.
[30] Bridget S. Wade,et al. Major shifts in calcareous phytoplankton assemblages through the Eocene‐Oligocene transition of Tanzania and their implications for low‐latitude primary production , 2008 .
[31] S. Bohaty,et al. Middle Eocene-late Oligocene climate variability: calcareous nannofossil response at Kerguelen Plateau, Site 748 , 2008 .
[32] M. Pagani,et al. Coccolithophore cell size and the Paleogene decline in atmospheric CO2 , 2008 .
[33] K. Miller,et al. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse , 2008 .
[34] J. Henderiks. Coccolithophore size rules — Reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths , 2008 .
[35] Caroline H. Lear,et al. Cooling and ice growth across the Eocene-Oligocene transition , 2008 .
[36] Bridget S. Wade,et al. Extinction and environmental change across the Eocene-Oligocene boundary in Tanzania , 2008 .
[37] Pinxian Wang,et al. Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A , 2007 .
[38] M. Pagani,et al. Refining ancient carbon dioxide estimates: Significance of coccolithophore cell size for alkenone-based pCO2 records , 2007 .
[39] I. Probert,et al. Effects of acidification and primary production on coccolith weight: Implications for carbonate transfer from the surface to the deep ocean , 2007 .
[40] P. Pearson,et al. Stable warm tropical climate through the Eocene Epoch , 2007 .
[41] Heiko Pälike,et al. The Heartbeat of the Oligocene Climate System , 2006, Science.
[42] Jan Backman,et al. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years , 2006 .
[43] R. Henrich,et al. Coccolith distribution patterns in South Atlantic and Southern Ocean surface sediments in relation to environmental gradients , 2006 .
[44] V. Yohai,et al. Robust Statistics: Theory and Methods , 2006 .
[45] D. J. Thomas,et al. Early Oligocene Onset of Deep-Water Production in the North Atlantic , 2005 .
[46] P. Pearson,et al. A revised tropical to subtropical Paleogene planktonic foraminiferal zonation , 2005 .
[47] J. Zachos,et al. Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene , 2005 .
[48] S. Villiers. Foraminiferal shell-weight evidence for sedimentary calcite dissolution above the lysocline , 2005 .
[49] J. Raven,et al. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. , 2005, Annual review of plant biology.
[50] L. Anderson,et al. Middle Eocene to early Oligocene paleoceanography from Agulhas Ridge, Southern Ocean (Ocean Drilling Program Leg 177, Site 1090) , 2005 .
[51] N. Shackleton,et al. Nannofossil evolutionary events in the mid-Pliocene: an assessment of the degree of synchrony in the extinctions of Reticulofenestra pseudoumbilicus and Sphenolithus abies , 2005 .
[52] S. Schumacher,et al. Regional differences in pelagic productivity in the late Eocene to early Oligocene—a comparison of southern high latitudes and lower latitudes , 2004 .
[53] G. Villa,et al. Eocene–Oligocene calcareous nannofossils from Maud Rise and Kerguelen Plateau (Antarctica): paleoecological and paleoceanographic implications , 2004 .
[54] Paul G. Falkowski,et al. The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.
[55] Ellen Thomas,et al. Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current , 2004 .
[56] N. Shackleton,et al. Identification of dissolution patterns in nannofossil assemblages: A high‐resolution comparison of synchronous records from Ceara Rise, ODP Leg 154 , 2004 .
[57] H. Andruleit,et al. Living coccolithophores in the northern Arabian Sea: ecological tolerances and environmental control , 2003 .
[58] David Pollard,et al. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 , 2003, Nature.
[59] U. Riebesell,et al. Carbon acquisition of bloom‐forming marine phytoplankton , 2003 .
[60] J. Flores,et al. Middle Eocene to early Oligocene calcareous nannofossil stratigraphy at Leg 177 Site 1090 , 2002 .
[61] J. Flores,et al. Miocene to Pliocene calcareous nannofossil biostratigraphy at ODP Leg 177 Sites 1088 and 1090 , 2002 .
[62] F. Wenzhöfer,et al. Modeling of calcite dissolution by oxic respiration in supralysoclinal deep-sea sediments , 2001 .
[63] L. Sloan,et al. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.
[64] A. Buccianti,et al. Biotic signals from nannoflora across the iridium anomaly in the upper Eocene of the Massignano section: evidence from statistical analysis , 2000 .
[65] M. Cachão,et al. Coccolithus pelagicus, a productivity proxy related to moderate fronts off Western Iberia , 2000 .
[66] Jörg Bollmann,et al. Determination of absolute coccolith abundances in deep-sea sediments by spiking with microbeads and spraying (SMS-method) , 1999 .
[67] William M. Balch,et al. Biologically mediated dissolution of calcium carbonate above the chemical lysocline , 1999 .
[68] M. Geisen,et al. Calibration of the random settling technique for calculation of absolute abundances of calcareous nannoplankton , 1999 .
[69] Alan C. Mix,et al. Foraminiferal faunal estimates of paleotemperature: Circumventing the No‐analog problem yields cool Ice Age tropics , 1999 .
[70] J. Meng,et al. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau , 1998, Nature.
[71] Björn A. Malmgren,et al. Logratio transformation of compositional data: a resolution of the constant sum constraint , 1998 .
[72] Kamiński,et al. Contributions to the Micropaleontology and Paleoceanography of the Northern North Atlantic , 1998 .
[73] L. Hayek,et al. Surveying Natural Populations: Quantitative Tools for Assessing Biodiversity , 1996 .
[74] H. Andruleit. A filtration technique for quantitative studies of coccoliths , 1996 .
[75] D. Eric,et al. Oligocene-Miocene calcareous nannofossil biostratigraphy and paleoecology from the Iberia abyssal plain , 1996 .
[76] Karen A. Salamy,et al. High‐resolution (104 years) deep‐sea foraminiferal stable isotope records of the Eocene‐Oligocene climate transition , 1996 .
[77] A. Gooday,et al. Cenozoic deep-sea benthic foraminifers: Tracers for changes in oceanic productivity? , 1996 .
[78] F. Jorissen,et al. A conceptual model explaining benthic foraminiferal microhabitats , 1995 .
[79] L. Diester-Haass,et al. Middle Eocene to early Oligocene paleoceanography of the Antarctic Ocean (Maud Rise, ODP Leg 113, Site 689): change from a low to a high productivity ocean , 1995 .
[80] I. P. Silva,et al. Decision on the Eocene-Oligocene boundary stratotype , 1993 .
[81] Ellen Thomas. 12. Middle Eocene-Late Oligocene Bathyal Benthic Foraminifera (Weddell Sea): Faunal Changes and Implications for Ocean Circulation , 1992 .
[82] James D. Wright,et al. Unlocking the Ice House: Oligocene‐Miocene oxygen isotopes, eustasy, and margin erosion , 1991 .
[83] S. W. Wise,et al. Biogeographic gradients of middle Eocene-Oligocene calcareous nannoplankton in the South Atlantic Ocean , 1990 .
[84] D. Dockery. Punctuated succession of Paleogene mollusks in the northern Gulf Coastal Plain , 1986 .
[85] G. Keller. Stepwise mass extinctions and impact events: Late Eocene to early Oligocene , 1986 .
[86] John Aitchison,et al. The Statistical Analysis of Compositional Data , 1986 .
[87] L. Peterson,et al. Carbonate dissolution in Recent sediments of the eastern equatorial Indian Ocean: Preservation patterns and carbonate loss above the lysocline , 1985 .
[88] G. P. Lohmann,et al. Evidence for primary control of the distribution of certain Atlantic Ocean benthonic foraminifera by degree of carbonate saturation , 1982 .
[89] J. Kennett. Cenozoic evolution of Antarctic glaciation the Circum-Antarctic Ocean and their impact on global paleoceanography , 1977 .
[90] W. Berger. Deep-sea carbonates: evidence for a coccolith lysocline , 1973 .
[91] R. Macarthur,et al. On the Relative Abundance of Species , 1960, The American Naturalist.
[92] E. Thomas,et al. Benthic foraminiferal response to the Middle Eocene Climatic Optimum (MECO) in the South-Eastern Atlantic (ODP Site 1263) , 2015 .
[93] Ellen Thomas,et al. Deep-sea benthic foraminiferal turnover during the early–middle Eocene transition at Walvis Ridge (SE Atlantic) , 2015 .
[94] B. Storey. Antarctica: A keystone in a changing world , 2013 .
[95] F. Jorissen,et al. Benthic foraminiferal biogeography: controls on global distribution patterns in deep-water settings. , 2012, Annual review of marine science.
[96] B. Hayward. The last global extinction (mid-Pleistocene) of deep-sea benthic foraminifera (Chrysalogonidae, Ellipsoidinidae, Glandulonodosariidae, Plectofrondiculariidae, Pleurostomellidae, Stilostomellidae), their late Cretaceous-Cenozoic history and taxonomy , 2012 .
[97] Laura Pea. Eocene-Oligocene paleoceanography of the subantarctic South Atlantic: Calcareous Nannofossil reconstructions of temperature, nutrient, and dissolution history , 2011 .
[98] D. Lazarus. The deep-sea microfossil record of macroevolutionary change in plankton and its study , 2011 .
[99] Ellen Thomas,et al. Evolución paleoambiental del tránsito Eoceno-Oligoceno en el Atlántico sur (Sondeo 1263) basada en foraminíferos bentónicos , 2010 .
[100] F. Sierro,et al. Coccolith distribution patterns in surface sediments of Equatorial and Southeastern Pacific Ocean , 2010 .
[101] F. Gregory,et al. Deep-time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies , 2007 .
[102] Ellen Thomas. Cenozoic mass extinctions in the deep sea: What perturbs the largest habitat on Earth? , 2007 .
[103] F. Rohlf. Paleontological Data Analysis , 2007 .
[104] F. Jorissen,et al. Chapter Seven Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics , 2007 .
[105] P. Pearson,et al. The Eocene-Oligocene transition , 2007 .
[106] P. Bown,et al. New Paleogene calcareous nannofossil taxa from coastal Tanzania: Tanzania Drilling Project Sites 11 to 14. , 2006, Journal of Nannoplankton Research.
[107] Caroline H. Lear,et al. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean , 2005, Nature.
[108] Antonella Buccianti,et al. Insights into Late Quaternary calcareous nannoplankton assemblages under the theory of statistical analysis for compositional data , 2004 .
[109] P. F. Barkera,et al. Origin , signature and palaeoclimatic influence of the Antarctic Circumpolar Current , 2004 .
[110] A. Gooday. Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics. , 2003, Advances in marine biology.
[111] B. Rea,et al. Leg 199 summary , 2002 .
[112] O Hammer-Muntz,et al. PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .
[113] Ø. Hammer,et al. PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .
[114] K. Salamy,et al. Latest Eocene–Early Oligocene climate change and Southern Ocean fertility: inferences from sediment accumulation and stable isotope data , 1999 .
[115] M. Hugueney. Eocene-oligocene climatic and biotic evolution , 1995 .
[116] W. Berggren,et al. GEOCHRONOLOGY, TIME SCALES AND GLOBAL STRATIGRAPHIC CORRELATION , 1995 .
[117] Marie-Pierre Aubry,et al. A revised Cenozoic geochronology and chronostratigraphy , 1995 .
[118] A. Winter,et al. Biogeography of living coccolithophores in ocean waters , 1994 .
[119] M. Aubry. Late Paleogene calcareous nannoplankton evolution: a tale of climatic deterioration , 1992 .
[120] Ellen Thomas. Late Cretaceous through Neogene deep-sea benthic foraminifera(Maud Rise, Weddell Sea, Antarctica) , 1990 .
[121] M. Sarnthein,et al. Reconstruction of Low and Middle Latitude Export Productivity, 30,000 Years BP to Present: Implications for Global Carbon Reservoirs , 1990 .
[122] C. G. Adams,et al. Larger Foraminifera and Events at the Eocene/Oligocene Boundary in the Indo-West Pacific Region , 1986 .
[123] H. Okada,et al. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975) , 1980 .
[124] G. P. Lohmann,et al. Early Cenozoic calcareous nannoplankton biogeography of the Atlantic Ocean , 1976 .
[125] R. H. Benson. The origin of the psychrosphere as recorded in changes of deep-sea ostracode assemblages , 1975 .
[126] E. Martini. Standard Tertiary and Quaternary calcareous nannoplankton zonation , 1971 .
[127] K. Pearson. Mathematical contributions to the theory of evolution.—On a form of spurious correlation which may arise when indices are used in the measurement of organs , 1897, Proceedings of the Royal Society of London.