Lexicographic Parsimony Pressure

We introduce a technique called lexicographic parsimony pressure, for controlling the significant growth of genetic programming trees during the course of an evolutionary computation run. Lexicographic parsimony pressure modifies selection to prefer smaller trees only when fitnesses are equal (or equal in rank). This technique is simple to implement and is not affected by specific differences in fitness values, but only by their relative ranking. In two experiments we show that lexicographic parsimony pressure reduces tree size while maintaining good fitness values, particularly when coupled with Koza-style maximum tree depth limits.

[1]  Tony Belpaeme Evolving Visual Feature Detectors , 1999, ECAL.

[2]  Annie S. Wu,et al.  Evolving control for distributed micro air vehicles , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[3]  Anikó Ekárt,et al.  Selection Based on the Pareto Nondomination Criterion for Controlling Code Growth in Genetic Programming , 2001, Genetic Programming and Evolvable Machines.

[4]  Kumar Chellapilla,et al.  Data mining using genetic programming: the implications of parsimony on generalization error , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[5]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[6]  Peter Nordin,et al.  Complexity Compression and Evolution , 1995, ICGA.

[7]  Hitoshi Iba,et al.  Genetic programming using a minimum description length principle , 1994 .

[8]  Lothar Thiele,et al.  Multiobjective genetic programming: reducing bloat using SPEA2 , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[9]  Tatiana Kalganova,et al.  Evolving more efficient digital circuits by allowing circuit layout evolution and multi-objective fitness , 1999, Proceedings of the First NASA/DoD Workshop on Evolvable Hardware.

[10]  Simon M. Lucas Structuring chromosomes for context-free grammar evolution , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[11]  Edwin D. de Jong,et al.  Reducing bloat and promoting diversity using multi-objective methods , 2001 .

[12]  Terence Soule,et al.  Removal bias: a new cause of code growth in tree based evolutionary programming , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[13]  Terence Soule,et al.  Effects of Code Growth and Parsimony Pressure on Populations in Genetic Programming , 1998, Evolutionary Computation.

[14]  Riccardo Poli,et al.  Genetic Programming Bloat with Dynamic Fitness , 1998, EuroGP.

[15]  Tony Belpaeme Evolution of Visual Feature Detectors , 1999 .

[16]  Annie S. Wu,et al.  Putting More Genetics into Genetic Algorithms , 1998, Evolutionary Computation.

[17]  Byoung-Tak Zhang,et al.  Balancing Accuracy and Parsimony in Genetic Programming , 1995, Evolutionary Computation.

[18]  Kenneth A. De Jong,et al.  Evolving Behaviors for Cooperating Agents , 2000, ISMIS.

[19]  P. Nordin,et al.  Explicitly defined introns and destructive crossover in genetic programming , 1996 .

[20]  Terence Soule,et al.  Code growth in genetic programming , 1996 .

[21]  Conor Ryan,et al.  Pygmies and civil servants , 1994 .

[22]  Haynes Collective Adaptation: The Exchange of Coding Segments. , 1999, Evolutionary computation.