Bounds on eigenvalues of Dirichlet Laplacian

AbstractIn this paper, we investigate an eigenvalue problem of Dirichlet Laplacian on a bounded domain Ω in an n-dimensional Euclidean space Rn. If λk+1 is the (k + 1)th eigenvalue of Dirichlet Laplacian on Ω, then, we prove that, for n ≥  41 and $$k\geq 41, \lambda_{k+1}\leq k^{\frac2n}\lambda_1$$ and, for any n and $$k, \lambda_{k+1}\leq C_{0}(n,k) k^{\frac2n}\lambda_1$$ with $$C_0(n,k)\leq {j^{2}_{n/2,1}}/{j^{2}_{n/2-1,1}}$$, where jp,k denotes the k-th positive zero of the standard Bessel function Jp(x) of the first kind of order p. From the asymptotic formula of Weyl and the partial solution of the conjecture of Pólya, we know that our estimates are optimal in the sense of order of k.

[1]  C. Xia,et al.  Inequalities for eigenvalues of a clamped plate problem , 2005 .

[2]  R. Benguria,et al.  A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions , 1992 .

[3]  K. Stewartson,et al.  On hearing the shape of a drum: further results , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  R. Benguria,et al.  More bounds on eigenvalue ratios for Dirichlet Laplacians in N dimensions , 1993 .

[5]  Q. Cheng,et al.  Inequalities for eigenvalues of Laplacian on domains and compact complex hypersurfaces in complex projective spaces , 2006 .

[6]  Peter Li Eigenvalue estimates on homogeneous manifolds , 1980 .

[7]  Shing-Tung Yau,et al.  On the Schrödinger equation and the eigenvalue problem , 1983 .

[8]  M. Protter Can one hear the shape of a drum? revisited , 1987 .

[9]  C. Thompson On the Ratio of Consecutive Eigenvalues in N‐Dimensions , 1969 .

[10]  G. Pólya,et al.  ON THE RATIO OF CONSECUTIVE EIGENVALUES , 1956 .

[11]  E. Harrell,et al.  On trace identities and universal eigenvalue estimates for some partial differential operators , 1997 .

[12]  Shing-Tung Yau,et al.  Eigenvalues of the laplacian of compact Riemann surfaces and minimal submanifolds , 1980 .

[13]  Q. Cheng,et al.  Estimates on Eigenvalues of Laplacian , 2005 .

[14]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[15]  M. Kac Can One Hear the Shape of a Drum , 1966 .

[16]  Mark S. Ashbaugh,et al.  The universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Protter, and H C Yang , 2002 .

[17]  E. Harrell,et al.  Commutator Bounds for Eigenvalues, with Applications to Spectral Geometry , 1994 .

[18]  E. Harrell Some geometric bounds on eigenvalue gaps , 1993 .